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Chapter 1

Introduction

In this thesis, we consider several classes of stochastic control problems with
the risk-sensitive optimality criterion. We focus on optimal stopping and im-
pulse control problems, and, using purely probabilistic methods, we charac-
terise optimal strategies for a wide class of Feller–Markov processes. Following
the risk-sensitive approach, we contribute to the theory of non-linear stochas-
tic control problems, which facilitate better stability of results compared to
the classic risk-neutral (linear) framework.

Stochastic control theory looks for an optimal way of controlling some
underlying phenomenon that is subject to random perturbations. A generic
form of a stochastic control problem could be expressed as

sup
a∈A

J(Z(a)), (1.0.1)

where a control a from a set of admissible controls A affects a distribution of
a random outcome Z(a) and should maximise some optimality criterion J ; see
e.g. Bertsekas and Shreve (1978); Pham (2009), and Bäuerle and Rieder (2011)
for a comprehensive overview. In the financial context, the control a ∈ A could
describe an admissible investment strategy, and Z(a) could correspond to the
associated cash-flow process. Typically, the functional J is used to quantify the
performance (utility) of the underlying project. It should be highlighted that,
in most cases, the problem is dynamic, i.e. the performance of the project is
affected by some stochastic process, and the strategy should take into account
this time dependence. In particular, an optimal strategy should dynamically
adjust to the changing environment.

In the classic context, the functional J corresponds to the expectation
operator (or expected utility) which leads to linear problems; see e.g. Bäuerle
and Rieder (2011). In this thesis, the optimality criterion J is associated with

1
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the so-called entropic (risk-sensitive) utility measure defined as

Jγ(Z) :=

{
1
γ lnE [exp(γZ)] , γ 6= 0,

E [Z] , γ = 0,
(1.0.2)

where Z is a random variable corresponding to the pay-off (or logarithmic
growth) of some investment project. The parameter γ ∈ R in (1.0.2) reflects
an investor’s risk-aversion. The case γ < 0 (respectively γ > 0) describes the
preferences of the risk-averse (respectively risk-seeking) investor, while γ = 0
corresponds to the risk-neutral preferences; see Howard and Matheson (1972)
for a seminal discussion. In this thesis, we focus on Jγ with γ < 0, which is
referred to as the risk-sensitive criterion.

For γ < 0, the functional (1.0.2) may be seen as the certainty equivalent
for the exponential utility function. Also, this functional could be seen as a
non-linear extension of the classic linear-quadratic Markowitz criterion. In the
Markowitz approach, the risk of the associated project is measured only by the
variance. However, it can be shown that the risk-sensitive criterion also takes
into account higher-order moments, which facilitate better stability of the
results; see e.g. Davis and Lleo (2014) for details. In fact, this criterion could be
seen as a non-linear extension of some other classic optimality criteria studied
in the stochastic control literature; see e.g. Hernandez-Lerma and Lasserre
(1996). In particular, for Z corresponding to the logarithmic rate of return,
the functional (1.0.2) could be seen as a non-linear version of the celebrated
Kelly criterion, which is frequently used by practitioners; see MacLean et al.
(2011).

The interesting properties of the risk-sensitive criterion result in the exten-
sive literature on this topic. In particular, this refers to generic stochastic con-
trol problems and Markov decision processes, see e.g. Hernández-Hernández
and Marcus (1996); Di Masi and Stettner (1999); Borkar and Meyn (2002);
Cavazos-Cadena and Montes-De-Oca (2005); Di Masi and Stettner (2007);
Jaśkiewicz (2007); Bäuerle and Rieder (2014); Cavazos-Cadena and Hernández-
Hernández (2017) for the discussion in the discrete time setting, and e.g. Flem-
ing and McEneaney (1995); Menaldi and Robin (2005); Biswas (2011); Ara-
postathis and Biswas (2018, 2020) for the analysis in the continuous time
framework. Also, risk-sensitive problems are considered in the partial obser-
vation framework, see e.g. Hernández-Hernández (1999); Cavazos-Cadena and
Hernández-Hernández (2005); Bäuerle and Rieder (2017). From the applied
point of view, risk-sensitive problems are studied in connection with portfolio
management, see e.g. Bielecki and Pliska (1999); Fleming and Sheu (2000); Na-
gai (2003); Pitera and Stettner (2016), as well as various applications in other
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disciplines, e.g. missile guidance, reinforcement learning, or neuroscience; see
e.g. Speyer (1976); Mihatsch and Neuneier (2002); Nagengast et al. (2010).
Nevertheless, it should be noted that, in the context of the risk-sensitive set-
ting, the applications of standard methods from the risk-neutral case often
lead to complex problems, typically involving quasi variational inequalities;
see e.g. Nagai (2006); Davis et al. (2010); Belak et al. (2017); Arapostathis
and Biswas (2020).

In this thesis, we focus on two types of controls, that is, optimal stopping
and impulse interventions. This choice corresponds to the fact that these con-
trols are usually the only feasible solutions to real-world problems. Moreover,
there is an intrinsic mathematical connection between impulse control and
optimal stopping; see e.g. Robin (1981).

In the following two paragraphs, we provide an overview of the problems
considered in this thesis. In particular, we briefly introduce the main objectives
and discuss the related literature. Then, we comment on the generic structure
of the thesis and outline the key results.

Optimal stopping problems The first type of controls considered in this
thesis is associated with optimal stopping times. In this context, the family
of admissible controls A from (1.0.1) consists of stopping times τ , and the
random variable Z(τ) quantifies the performance of the project terminated
(stopped) at τ . It should be noted that many practical control problems could
be expressed in terms of optimal stopping. This includes some important
examples in mathematical finance (e.g. American options theory, optimal asset
liquidation), statistics (sequential testing), operations research, and ecology;
see e.g. Shiryaev (1978); Bensoussan and Lions (1984); Carmona and Touzi
(2008); Bäuerle and Rieder (2011) for details.

With reference to the risk-sensitive optimal stopping framework, we study
problems of the form

sup
τ
Jγx

(∫ τ

0
ĝ(Xs)ds+ Ĝ(Xτ )

)
, x ∈ E, (1.0.3)

where τ is a stopping time, X is a standard Markov process with values in a
state space E, Jγx is a version of (1.0.2), where the expectation operator E is
replaced by the conditional expectation given that X0 = x, while ĝ and Ĝ are
running cost and terminal reward/cost functions, respectively. From the eco-
nomic perspective, (1.0.3) encodes the problem of a decision-maker who wants
to find an optimal time for a termination of some investment project. As long
as the project is active, the decision-maker has to cover the running cost (as-
sociated with ĝ), which may reflect some operational or financial expenses. At
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the moment of stopping, the decision-maker gets the terminal reward (mea-
sured by Ĝ), which may correspond to the contingent claim pay-off or value
of the sold asset.

Regarding (1.0.3), we study the structure of an optimal stopping time and
the regularity properties of the value function. In particular, we investigate
the continuity with respect to a starting point x and various approximation
schemes, including time horizon limits and dyadic approximations. Our anal-
ysis is based on the study of the corresponding optimal stopping Bellman
equation. In particular, we identify the extremal solutions to this equation
and give a sufficient condition for the uniqueness.

Typically, a characterisation of the optimal stopping times is based on the
corresponding Snell envelope of the value process; see e.g. Bismut and Skalli
(1977) and El Karoui (1981) for classic contributions, and Kobylanski and
Quenez (2012) for more recent results. Also, to obtain an optimal stopping
time, it is possible to use convex optimisation arguments and duality theory;
see e.g. Pennanen and Perkkiö (2019). In the Markovian setting, many opti-
mal stopping problems could be solved with the help of a specific optimality
Wald–Bellman equation; see e.g. Shiryaev (1978); Peskir and Shiryaev (2006);
Shiryaev (2019). The existence of a solution to this equation could be obtained
by value iteration arguments or the penalty approach, see e.g. Zabczyk (1984)
and Stettner (2011). Also, it may result from the use of viscosity techniques
applied to variational inequalities; see e.g. Bensoussan and Lions (1984); Pham
(2009), and Dai and Menoukeu-Pamen (2018).

In the literature, regularity properties of the optimal stopping value func-
tion were primarily studied in the context of risk-neutral (additive) stopping
problems; see e.g. Bassan and Ceci (2002) and Palczewski and Stettner (2014).
In particular, this applies to the non-uniqueness of a solution to the Bellman
equation; see Section 2.11 in Shiryaev (1978) and Theorem 1.13 in Peskir and
Shiryaev (2006) for classic contributions. In the risk-sensitive context, Na-
gai (2007b) considered a variational characterisation of the optimal stopping
value function, Bäuerle and Rieder (2015) studied the properties of partially
observable discrete time stopping problem, and Bäuerle and Popp (2018) con-
sidered stopping problem for piecewise constant Markov process (continuous
time Markov chain). It should be noted that, typically, the risk-sensitive
stopping problems cannot be easily embedded in the classic optimal stopping
framework. This could be associated with the more complex, multiplicative
nature of these problems; see e.g. Nagai (2007b) and Section 3.1 in this thesis
for further details.
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Impulse control problems The second type of controls studied in this
thesis is associated with impulse interventions. In a nutshell, an impulse con-
trol strategy V := (τi, ξi)

∞
i=1 for the stochastic process X is described by the

increasing sequence of impulse times (τi) and the sequence of after-impulse
states (ξi). Whenever a decision-maker decides to apply an impulse, the pro-
cess is shifted to the chosen state. More specifically, up to the time τ1, the
process X evolves according to its usual dynamics, at τ1 it is shifted to ξ1,
where it starts its evolution again and follows it up to the time of the next
impulse τ2, etc. We refer to Robin (1978) and Section 2.2 in this thesis for a
more detailed discussion.

It should be noted that impulse controls are widely used to solve some
practical problems. In this way, one can affect a continuous time phenomenon
in the discrete time manner, taking into account the delay between the decision
and its execution, infrastructure capacity (e.g. limit order book characteristics
at the stock exchange), and transaction costs; see e.g. Bensoussan and Lions
(1984) and Davis (1993) for a detailed discussion. From a practical point of
view, this type of control may be applied e.g. to design an optimal intervention
scheme for a central bank on the foreign exchange market. In this context,
the controlled process describes the exchange rate, and the decision-maker
needs to determine when to intervene (impulse times) and what is the target
rate (after-impulse states); we refer to Jeanblanc-Picqué (1993); Runggaldier
and Yasuda (2018), and references therein for a detailed discussion. Other
applications of impulse control strategies include i.a. controlling epidemics,
ecosystems (optimal harvesting schemes), finance (cash management), and
portfolios with transaction costs; see e.g. Piunovskiy et al. (2020); Erdlenbruch
et al. (2013); Córdova-Lepe et al. (2012); Korn (1999).

The practical importance of the impulse control results in the extensive lit-
erature on this subject, see e.g. Robin (1981); Davis et al. (2010); Palczewski
and Stettner (2010); Bayraktar et al. (2013); Dufour and Piunovskiy (2016);
Menaldi and Robin (2017); Palczewski and Stettner (2017). Still, its coverage
in the risk-sensitive case is limited and only very specific cases have been stud-
ied so far. In particular, Sadowy and Stettner (2002) considered continuous
time Markov processes with additive shift-cost functions, Nagai (2007a) dis-
cussed the problem of optimal investment with transaction costs, Hdhiri and
Karouf (2011) considered general non-Markovian setting with impulse cost de-
pending only on the after-impulse state, and Pitera and Stettner (2021) proved
the existence of a solution to the impulse control optimality equation in the
dyadic framework.

With reference to the impulse control framework, we study problems of
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the form

sup
V

lim inf
T→∞

1

T
Jγ(x,V )

(∫ T

0
f̂(Ys)ds+

∞∑
i=1

1{τi≤T}ĉ(Yτ−i
, ξi)

)
, x ∈ E, (1.0.4)

where Jγ(x,V ) is a conditional version of the entropic utility measure (1.0.2)

corresponding to a starting point x and a strategy V , the function f̂ describes
the running reward, while ĉ measures the cost associated with impulses, and
Yτ−i

describes the state of the controlled process right before the impulse.

Problems of the type of (1.0.4) could be seen as a maximisation of the long
run logarithmic rate of return corresponding to the impulse control policy;
see Bielecki and Pliska (2003). Typically, they are very robust and time-
consistent. In particular, the solution is often independent of the starting
point x (ergodic property); see Hernandez-Lerma and Lasserre (1996) for a
detailed discussion.

It should be noted that impulse control and optimal stopping problems are
tightly linked. Typically, the suitable optimal stopping times identify the right
moments when one should apply the impulse; see Robin (1978). Thus, while
studying impulse control problems, we extensively use the obtained results on
the optimal stopping.

Main results This thesis is based on three published papers, i.e. Jelito et al.
(2020, 2021) and Jelito and Stettner (2022). The main contributions of the
thesis are as follows. First, we study the risk-sensitive optimal stopping Bell-
man equations in the discrete and continuous time settings. In particular,
we provide a probabilistic interpretation for the minimal and the maximal
solutions to these equations in terms of the suitable infinite time horizon stop-
ping problems; see Theorem 3.2.6 and Theorem 3.4.3. The results cover both
discrete and continuous time frameworks. It should be noted that the con-
tinuous time case requires the use of some non-standard techniques related to
the properties of Feller-Markov processes.

Second, under relatively weak assumptions imposed on the underlying pro-
cess, we obtain several results related to the regularity properties of the in-
finite time horizon optimal stopping value functions. In particular, in Theo-
rem 3.2.14 and Theorem 3.4.11, we show that the value functions are contin-
uous with respect to a starting point of the process and we provide formulae
for optimal stopping times. The results are linked to the uniqueness of a solu-
tion to the optimal stopping Bellman equation. Thus, in Theorem 3.2.11 and
Theorem 3.4.7, we provide generic sufficient conditions for this property.

10:1399999619
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Third, while studying infinite time horizon optimal stopping problems, we
obtain numerous auxiliary results that are interesting on their own merit. In
particular, in Section 3.3, we show that the suitable finite time horizon stop-
ping problems are jointly continuous with respect to a starting point and a
time horizon; see Theorem 3.3.2. In the proof, we introduce a dyadic ap-
proximation of the value function that could be used to obtain a numerical
approximation scheme for the problem. Also, the proof is based on the dis-
tance control properties of the wide class of Feller-Markov processes which, to
our best knowledge, have not been considered in the risk-sensitive context.

Fourth, we study finite and infinite time horizon (long-run) risk-sensitive
impulse control problems. In both cases, we formulate suitable forms of the
associated impulse control Bellman equations and prove the existence of solu-
tions to them; see Theorem 4.2.5 and Theorem 4.3.8. Based on these results,
we construct optimal strategies for the corresponding problems; see Theo-
rem 4.2.2 and Theorem 4.3.4. The argument for the finite time horizon case
is linked to the problems with finitely many impulses. In this way, we obtain
several approximation results that can be used to numerically solve the under-
lying problem; see Proposition 4.2.9. The argument for the long-run case uses
a time discretisation technique. More specifically, we consider impulse control
problems on the dyadic time-grid and show that they approximate the initial
problem when the time step goes to zero. To do this, we link the underlying
impulse control problems to the suitable optimal stopping setting and use the
obtained results on the risk-sensitive optimal stopping. The specific link is
based on the change of measure transformation associated with a solution to
the Multiplicative Poisson Equation; see Proposition 4.3.2 and Theorem 4.3.8.

Fifth, this thesis contains a detailed analysis of the computable examples
illustrating our assumptions and results. In particular, we show that our
framework covers a wide class of Feller-Markov processes, including piecewise
deterministic dynamics and reflected diffusions; see Section 5.1 and Section 5.2.
Also, in Section 5.3, we present a toy dynamics with explicit multiple solutions
to the optimal stopping Bellman equations, both in the discrete and continuous
time settings; see Example 5.3.1 and Example 5.3.5. This shows that some of
our results cannot be generalised.

Sixth, for the reader’s convenience, we provide a comprehensive comment
on selected techniques used in this thesis. In particular, in Section A.4, we
give a detailed description of the change of measure transformation based on
the solution to the Multiplicative Poisson Equation. The idea that we may
simplify some optimisation problems with the help of the change of measure
was used e.g. in Robin (1981) in the additive setting and in Sadowy and
Stettner (2002) in the multiplicative case. However, usually, the properties of

11:7921671506
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the new measures are only outlined. In this thesis, we clarified some points
related to the corresponding Feller-Markov process; see Theorem A.4.6 for
details. This can be used to further generalise the use of the change of measure
technique.

Finally, this thesis contains several auxiliary methodological ideas that,
in our opinion, are worth mentioning. First, we would like to point out
Lemma 3.3.1, which, in our belief, contains interesting applications of the dis-
tance control properties of Feller-Markov processes. This simplifies estimates
related to the uniform convergence of specific expectations and is one of the
main building blocks of the proof of Theorem 3.3.2. A similar technique is used
in the proof of Proposition 4.2.8. Also, it is worth highlighting the proof of the
first part of Theorem 3.4.3, which contains a non-standard argument related
to the convergence of stopping times. More specifically, using the structure of
the corresponding optimal stopping value functions, we can find an optimal
stopping time for the minimal solution to the Bellman equation and link it to
the suitable finite time horizon problem. A similar technique is used in the
proof of Theorem 3.5.1. Lastly, we would like to highlight again the change
of measure transformation based on the Multiplicative Poisson Equation. In
particular, in Proposition 4.3.2, we use this technique to transform the asso-
ciated stopping problem into the setting considered in Chapter 3. We believe
that this is an interesting approach that can be used to analyse some other
stopping problems that do not satisfy standard assumptions.

Structure The structure of this thesis is as follows. This introduction is
followed by Chapter 2, where we set up the terminology and notation used
throughout this thesis. Next, in Chapter 3, we discuss the optimal stopping
problems and, in Chapter 4, we consider the impulse control problems. Also,
in Chapter 5, we present a series of examples for our assumptions and results.
In Appendix A, we discuss some complementary results. The thesis concludes
with the list of references and the index of frequently used symbols.

Acknowledgements I would like to express my deepest gratitude to my
advisors –  Lukasz Stettner and Marcin Pitera – for introducing me to the risk-
sensitive stochastic control theory. Their outstanding ability to share passion
for mathematics guided and motivated me during my PhD studies. Also, I
thank them for their invaluable support when I was working on this thesis.
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Chapter 2

Preliminaries

In this chapter, we introduce some basic terminology and notation that is used
throughout this thesis. In particular, in Section 2.1, we discuss the notion of
a standard Markov process and comment on the regularity properties of its
transition semigroup. Next, in Section 2.2, we review the construction of the
process corresponding to the impulse control strategy. Finally, in Section 2.3,
we discuss the properties of the entropic utility measure and the risk-sensitive
criterion. This chapter is intended to introduce the terminology and recall
some useful results; no claim of originality is made here.

Before we proceed, we summarise some conventions and notation used
in this thesis. Given some set A, by Ac we denote its complement. By N
and R+ we denote the sets of non-negative integers and non-negative real
numbers, respectively. Also, we define N∗ := N \ {0}. For x, y ∈ R, by
x ∧ y we denote their minimum, i.e. min(x, y), with a natural (pointwise)
extension for functions and random variables. If not stated otherwise, all
equalities associated with random variables should be understood in the almost
sure sense with respect to the underlying probability measure. That saying,
we sometimes write “µ a.s.” to emphasize that some property holds almost
surely with respect to a specific measure µ. We follow the convention that the
infimum of the empty set is equal to +∞ and we set the value of an “empty”
sum to 0, i.e. we have

∑−1
i=0(·) := 0. The end of an example and a remark is

denoted by � and ♦, respectively.

In the thesis we extensively use some notation related to families of sets
and functions. Given a metric space A, by B(A) we denote the Borel σ-field
on A. Next, by M(A) and C(A) we denote the family of B(A)-measurable
real-valued functions on A and continuous real-valued functions on A, respec-
tively. Also, by Mb(A) ⊂ M(A) and M+(A) ⊂ M(A) we denote the cor-

9
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responding subfamilies of bounded and non-negative functions, respectively.
Similarly, by Cb(A) := C(A)∩Mb(A) and C+(A) := C(A)∩M+(A) we denote
the corresponding subfamilies of bounded continuous and non-negative con-
tinuous functions, respectively. Also, we set C+

b (A) := Cb(A) ∩ C+(A). Next,
by C0(A) we denote the family of continuous functions vanishing at infinity,
i.e. we get that f ∈ C0(A) if, for any ε > 0, we may find a compact set
K ⊆ A such that |f(x)| ≤ ε for x /∈ K. Also, for any map f ∈ Mb(A), we
define its supremum norm by ‖f‖ := supx∈A |f(x)|. Next, note that in this
thesis, monotonicity properties are understood in the weak sense, i.e. a map
f : R → R is called increasing (respectively, decreasing) if, for any x < y,
we get f(x) ≤ f(y) (respectively, f(x) ≥ f(y)). Finally, for a real sequence
(an)∞n=1 and a ∈ R ∪ {−∞,+∞}, by an ↑ a (respectively, an ↓ a) we denote
the fact that (an) converges increasingly (respectively, decreasingly) to a as
n→∞.

2.1 Feller-Markov processes

In this section, we recall the notion of a standard Markov process and its ba-
sic properties. Also, we discuss specific regularity properties of the transition
semigroup associated with this process. This section is based mainly on Sec-
tion 1.4 of Shiryaev (1978); see also Dynkin (1965); Gikhman and Skorokhod
(1975), and Blumenthal and Getoor (2007) for further discussion.

Let us start with establishing the necessary notation. By T we denote the
set of considered time points; in this thesis this is either T = N in the discrete
time setting or T = R+ in the continuous time case. Also, by (Ω,F ,F) we
denote a filtered measurable space with a set of elementary outcomes Ω, a
σ-field F and a filtration F = (Ft)t∈T. We assume that the filtration is right-
continuous and universally complete. Next, let (E, E) be a locally compact
separable metric space with a metric ρ and the Borel σ-field E := B(E). The
pair (E, E) constitutes a state space for a Markov process which is defined
below. Typically, E is a subset of Rd for some d ∈ N∗ with the Euclidean
metric. From now on we fix some x0 ∈ E and, with a slight abuse of notation,
we define a norm-like function ‖x‖ := ρ(x0, x), x ∈ E. In particular, if E is a
vector space, we choose x0 = 0 and ‖ · ‖ corresponds to the norm induced by
the metric ρ.

2.1.1 Standard Markov processes

The main focus of this thesis is set on the control problems related to Markov
processes. In fact, we focus on the so-called standard Markov processes. Be-
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fore we provide a formal definition, let us outline the main idea. A process
(Xt), t ∈ T, on (Ω,F ,F) with values in (E, E) is Markov (with respect to a
probability measure P on (Ω,F)), if, for any B ∈ E and t, s ∈ T, we have

P [Xt+s ∈ B|Ft] = P [Xt+s ∈ B|Xt] P a.s. (2.1.1)

Intuitively, Equation (2.1.1) states that the distribution of Xt+s conditioned
on the history encoded by Ft depends only on the present state of the process
Xt. Based on this property we may consider a process restarted at Xt and
heuristically rewrite (2.1.1) as

P [Xt+s ∈ B|Ft] = P [Xs ∈ B|X0 = Xt] P a.s. (2.1.2)

To make this formula formally meaningful, in Definition 2.1.3 we introduce
the notion of a standard Markov process. The main difference between this
concept and (2.1.1) lies in the fact that now, instead of a single measure P,
we consider a family of probability measures Px, x ∈ E, which are linked to
X. In this way, we may provide a rigorous meaning of (2.1.2). Also, standard
Markov processes are characterised by several useful properties that facilitate
the analysis of control problems; see the discussion following the definition for
details.

Definition 2.1.1. A pair ((Xt)t∈T, (Px)x∈E) is called a standard Markov pro-
cess on (Ω,F ,F) with values in the state space (E, E) if the following hold:

(1) The process (Xt), t ∈ T, takes values in (E, E), has càdlàg trajectories
and is adapted to F.

(2) For any x ∈ E, the map F 3 A 7→ Px(A) is a probability measure and
we have Px[X0 = x] = 1. Also, for any A ∈ F , the map E 3 x 7→ Px(A)
is measurable.

(3) The process (Xt), t ∈ T, satisfies the strong Markov property, i.e. for any
x ∈ E, B ∈ E , s ∈ T, and a stopping time τ satisfying Px[τ < ∞] = 1,
we have

Px [Xτ+s ∈ B|Fτ ] = PXτ [Xs ∈ B] Px a.s. (2.1.3)

(4) The process (Xt), t ∈ T, is quasi left-continuous, i.e. for any x ∈ E, a
stopping time τ satisfying Px[τ < ∞] = 1 and any increasing sequence
of stopping times (τn) such that τn ↑ τ as n → ∞, we have Xτn → Xτ

Px a.s.

(5) For any t ∈ T and ω ∈ Ω, there exists ω̃ ∈ Ω such that, for any s ∈ T,
we get Xt+s(ω) = Xs(ω̃).

15:1111766025



12

Condition (1) is a standard assumption for the adaptedness and regularity
of the process trajectories. Based on Condition (2) we may interpret Px as a
conditional distribution given that X0 = x, x ∈ E. Condition (3) states the
strong Markov property of (Xt), t ∈ T, and gives a precise meaning of (2.1.2).
Note that if (3) holds only for deterministic stopping times, the resulting
process is called (weak) Markov; cf. (2.1.1). Condition (4) requires the quasi
left-continuity of the process; it should be noted that the trajectories may
be discontinuous since we assumed only the càdlàg property. Also, note that
Conditions (3) and (4) are automatically satisfied in the discrete time setting,
i.e. for T = N; see Section 3.18 in Dynkin (1965) for details. Condition (5)
implies that we have a sufficiently “rich” set Ω and can be used to define
the Markov shift operator; see Section 1.4.3 in Shiryaev (1978) for details.
Typically, this condition reflects the properties of a canonical probability space.
In fact, when necessary, we assume that the underlying probability space is a
canonical space of càdlàg processes with a suitable (Borel) σ-field.

For brevity, if T = N, we say that X = (Xn)n∈N is a discrete time standard
Markov process and if T = R+, we say that X = (Xt)t∈R+ is a continuous time
standard Markov process. In any case, we tacitly assume that the family of
probability measures (Px)x∈E is given and, together with X, satisfies Defini-
tion 2.1.1. Also, for any x ∈ E, by Ex we denote the expectation operator
corresponding to Px.

One may consider a more general setting than the one stated in Def-
inition 2.1.1. In particular, we may define a time-inhomogeneous Markov
process which conditional distribution depends on the current time and the
current state. It can be shown that this process may be embedded in the
time-homogeneous setting by a suitable enlargement of the state space; see
e.g. Section 1.4.6 in Shiryaev (1978) for details.

Most of the results in this thesis are associated with optimal stopping prob-
lems. Thus, let us now introduce some notation related to stopping times. To
simplify the narrative, we fix some standard Markov process ((Xt)t∈T, (Px)x∈E)
on (Ω,F ,F) with values in (E, E). In the continuous time setting (i.e. for
T = R+), by T we denote the family of stopping times with respect to the
filtration F taking values in R+ ∪ {+∞}. Next, for any x ∈ E, by Tx and Tx,b
we denote the families of Px a.s. finite and Px a.s. bounded stopping times,
respectively. Also, we consider stopping times with values on the dyadic time-
grid. Thus, setting δm := 1

2m , m ∈ N, for any m ∈ N we define T m as the
family of stopping times with values in the set {kδm : k ∈ N} ∪ {+∞}. Also,
for any m ∈ N and x ∈ E, we define T mx := T m ∩Tx and T mx,b := T m ∩Tx,b. In

particular, T 0
x and T 0

x,b denotes the respective family of stopping times with
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values in N. Also, with a slight abuse of notation, we use T 0
x and T 0

x,b to denote
the respective families of Px a.s. finite and Px a.s. bounded stopping times in
the discrete time framework (i.e. for T = N).

2.1.2 Transition semigroup and the Feller property

In this section, we introduce the transition semigroup linked to the standard
Markov process and discuss its basic properties. Throughout this section, by
((Xt)t∈T, (Px)x∈E), we denote a standard Markov process on (Ω,F ,F) with
values in (E, E). Also, we recall that we have T = N in the discrete time
setting and T = R+ in the continuous time case.

For any t ∈ T, we define the transition operator Pt : Mb(E) → Mb(E)
associated with X by

Pth(x) := Ex[h(Xt)], h ∈Mb(E), x ∈ E. (2.1.4)

Based on Condition (3) in Definition 2.1.1, we get that Pt◦Ps = Pt+s, t, s ∈ T,
thus (Pt)t∈T forms a semigroup. In fact, using Condition (2) from Defini-
tion 2.1.1, we also get P0h ≡ h, thus (Pt)t∈T is a monoid with the identity
element P0.

Now, we define several useful classes of the regularity of the semigroup
(Pt)t∈T.

Definition 2.1.2. We say that the transition semigroup (Pt)t∈T is

(1) Cb-Feller if PtCb(E) ⊂ Cb(E) for any t ∈ T \ {0};

(2) C0-Feller if PtC0(E) ⊂ C0(E) for any t ∈ T \ {0};

(3) strong Feller if PtMb(E) ⊂ Cb(E) for any t ∈ T \ {0}.

Remark 2.1.3. It should be noted that, under some technical conditions (in-
cluding separability and local compactness of a state space), one may construct
a Markov process with a given semigroup; see e.g. Theorem 3 in Section I.6
of Gikhman and Skorokhod (1975). In this case, the regularity properties
of the semigroup imply certain useful properties of the Markov process. In
particular, if the semigroup is Cb-Feller and the corresponding process is right-
continuous, then it is also strong Markov; see e.g. Theorem 3.10 in Dynkin
(1965) for details. ♦

Although the Feller properties are defined for the semigroup, in the fol-
lowing, we identify the semigroup with the standard Markov process X. In
particular, for brevity, we say that X is Cb-Feller-Markov, C0-Feller-Markov or
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strong Feller-Markov if its transition semigroup satisfies the respective condi-
tion from Definition 2.1.2.

Let us now illustrate the properties from Definition 2.1.2 by a series of ex-
amples. First, in the following simple example we show that if the distribution
of X is absolutely continuous with a continuous density, then the process is
strong Feller.

Example 2.1.4. Suppose that, for any t ∈ T \ {0}, we get

Px[Xt ∈ A] =

∫
A
pt(x, y)νt(dy), A ∈ E

for some probability measure νt on (E, E) and a bounded density pt which
is continuous with respect to x variable. Then, using Lebesgue’s dominated
convergence theorem, we get that the process X is strong Feller. �

Next, note that, directly from Definition 2.1.2, we get that the strong Feller
process is also Cb-Feller. As we state in Proposition 2.1.5, a similar property
holds for C0-Feller processes. For the proof, see Corollary 2.2 in Palczewski
and Stettner (2010).

Proposition 2.1.5. If X is a standard C0-Feller-Markov process, then X is
also standard Cb-Feller-Markov.

Finally, in the following simple example we show that the implication of
Proposition 2.1.5 cannot be reversed. However, it should be noted that if
the state space E is compact, the notions of Cb-Feller and C0-Feller processes
coincide; this follows directly from the fact that, for a compact E, we get
C0(E) = Cb(E).

Example 2.1.6. Let T := N and E := R+. Let α ∈ [0, 1] and (Xn)n∈N be a
discrete time Markov process with the transition probability

Px[X1 = 0] = α, Px[X1 = x+ 1] = 1− α, x ∈ E.

Thus, for any h ∈Mb(E), we get

P1h(x) = αh(0) + (1− α)h(x+ 1), x ∈ E.

Thus, the process X is Cb-Feller, but it is not C0-Feller. �

Markov processes with the C0-Feller property are commonly used tools in
the stochastic control theory. This setting includes Lévy processes and solu-
tions to stochastic differential equations driven by Lévy processes; for details
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see Theorem 3.1.9 and Theorem 6.7.2 in Applebaum (2009), and Example
1.2.1 in Arapostathis et al. (2012). Also, C0-Feller-Markov processes are char-
acterised by several useful regularity properties. In the following proposition,
we collect two of them. For the proof, see Proposition 2.1 in Palczewski and
Stettner (2010) and Proposition 6.4 in Basu and Stettner (2020).

Proposition 2.1.7. Let X be a continuous time standard C0-Feller-Markov
process. Then:

(1) For any compact set Γ ⊆ E and t0 > 0, we get

lim
r→∞

sup
x∈Γ

Px

[
sup

s∈[0,t0]
ρ(Xs, x) ≥ r

]
= 0.

(2) For any compact set Γ ⊆ E and r0 > 0, we get

lim
t→0

sup
x∈Γ

Px

[
sup
s∈[0,t]

ρ(Xs, x) ≥ r0

]
= 0.

The intuitive meaning of Proposition 2.1.7 is as follows: from (1), given
some time horizon t0, we may find r > 0 big enough such that with high
probability, up to the time t0, the process stays inside the ball with radius r.
Similarly, from (2), given some radius r0, we may find a time horizon t small
enough such that with high probability, up to the time t, the process stays
inside the ball with radius r0. Also, in both cases, the estimates are uniform
with respect to a starting point from some compact set.

Let us now introduce the second semigroup associated with a continuous
time Markov process X. We fix some function f ∈ Cb(E) and define

Pft h(x) := Ex
[
e
∫ t
0 f(Xs)dsh(Xt)

]
, t ≥ 0, h ∈Mb(E), x ∈ E. (2.1.5)

This semigroup could be associated with discounted problems or Markov pro-
cesses with creation/killing. It can be shown that the Cb-Feller property of

(Pt)t∈R+ transfers into the similar property of (Pft )t∈R+ . For the proof, see
Lemma 4 in Section II.5 of Gikhman and Skorokhod (1975).

Proposition 2.1.8. If X is a continuous time standard Cb-Feller-Markov pro-
cess, then, for any t ∈ R+, we get Pft Cb(E) ⊂ Cb(E).
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2.2 Impulse control strategies

In this section, we review the main points of the construction of a process
corresponding to an impulse control strategy. For brevity, we do not include
the proofs. An exhaustive discussion with detailed arguments can be found in
Chapter V in Robin (1978); see also Section 2 in Stettner (1982), Section 54
in Davis (1993), and Appendix in Christensen (2014).

Let ((Xt)t≥0, (Px)x∈E) be a continuous time standard Markov process on
(Ω,F ,F) with values in (E, E). For transparency, we assume that the process
is defined on the canonical space. In particular, we have that Ω is a family of
càdlàg functions on [0,∞) with values in E and Xt(ω) = ω(t), t ≥ 0, ω ∈ Ω.

Before we provide details of the construction, let us outline the main idea.
We wish to control the process X by impulses. An impulse control strategy
V := (τi, ξi)

∞
i=1 consists of an increasing sequence of impulse times (τi) and

a sequence of adapted after-impulse states (ξi). The controlled process starts
at x ∈ E and follows its uncontrolled dynamics up to τ1. At this point, it
is shifted to ξ1, where it starts its (uncontrolled) evolution again, etc. The
behaviour of the controlled process is captured by a new measure P(x,V ).

The main difficulty of the construction could be associated with the fact
that we consider a discontinuous (càdlàg) uncontrolled Markov processes.
Thus, it is possible that the jump and impulse times coincide and, in the
construction, one needs to take into account before-jump, after-jump, and
after-impulse states, which, in theory, are associated with the same time point.
In fact, if the trajectories of the uncontrolled process are continuous, the con-
struction could be simplified (up to some degree); see Helmes et al. (2019) for
a detailed discussion.1

To formally introduce a controlled process, we define a new filtered mea-
surable space (Ω̂, F̂ , F̂) constructed with the help of the countable product of
(Ω,F ,F). Thus, we set Ω̂ :=

∏∞
k=1 Ω, F̂ :=

⊗∞
k=1F and F̂ := (F̂t)t≥0 with

F̂t :=
⊗∞

k=1Ft, t ≥ 0, where
∏

denotes the Cartesian product and
⊗

de-
notes the product σ-field. On this space, we consider the coordinate process
X̂ = (X̂t)t≥0 defined, for any t ≥ 0 and ω̂ = (ω1, ω2, . . .) ∈ Ω̂, by

X̂t(ω̂) := (X1
t (ω1), X2

t (ω2), . . .) := (ω1(t), ω2(t), . . .). (2.2.1)

1The technical difficulties related to the formal construction of the controlled process were
nicely summarised by M. Davis: “The formal probabilistic apparatus necessary to describe
the above situation precisely, which we give next, is unfortunately rather cumbersome. This
seems inevitable, but - fortunately - the details of the construction are only occasionally
used explicitly in the ensuing developments, as will be seen below”; see Section 54 in Davis
(1993).
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Now, we give a more specific comment on an impulse control strategy
V := (τi, ξi)

∞
i=1. For any i ∈ N∗, we assume that τi is a stopping time with

respect to the filtration (
⊗i

k=1Ft ⊗
⊗∞

k=i+1{∅,Ω}), t ≥ 0, and with values
in R+ ∪ {+∞}. Also, we assume that τi ≤ τi+1, i ∈ N∗. Next, we assume
that ξi is a random variable taking values in E (or a fixed subset of E) and is
measurable with respect to

⊗i
k=1Fτi ⊗

⊗∞
k=i+1{∅,Ω} . In particular, we get

that τi and ξi depend only on the first i coordinates of X̂. With a strategy V
satisfying these assumptions we associate a controlled process Y = (Yt)t≥0 on

(Ω̂, F̂ , F̂) given by

Yt(ω̂) := Xi
t(ω̂) = ωi(t), ω̂ = (ω1, ω2, . . .) ∈ Ω̂, t ∈ [τi−1(ω̂), τi(ω̂)),

with the convention τ0 ≡ 0. Also, to simplify the notation, by Yτ−i
:= Xi

τi ,

i ∈ N∗, we denote the state of the process right before the ith impulse (yet,
possibly, after the jump).

The family of impulse control strategies satisfying the assumptions stated
in the previous paragraphs is denoted by V. By Vm ⊂ V, m ∈ N, we de-
note the family of impulse control strategies with impulse times restricted to
the time-grid {0, δm, 2δm, . . .} ∪ {+∞}, where δm := (1/2)m. Next, for any
n ∈ N, by Vn ⊂ V we denote the family of impulse control strategies with at
most n impulses (i.e. with τn+1 ≡ +∞). Also, for any n,m ∈ N, we define
Vmn := Vn ∩ Vm.

With a strategy V = (τi, ξi)
∞
i=1 ∈ V and a starting point x ∈ E we associate

a new probability measure P(x,V ) such that

P(x,V )[X
1
t ∈ A] = Px[X1

t ∈ A], t ∈ [0, τ1), A ∈ F ,

and for any i ∈ N∗, t ≥ 0, F̂ iτi :=
⊗i

k=1Fτi ⊗ Fτ−i ⊗
⊗∞

k=i+2{∅,Ω}, and

A1, . . . , Ai+1 ∈ F , we get

P(x,V )[X
1
τi+t ∈ A1, . . . , X

i
τi+t ∈ Ai, X

i+1
τi+t
∈ Ai+1|F̂ iτi ]

= δy
X1
τ1

(A1) · . . . · δy
Xiτi

(Ai)Pξi [X
i+1
t ∈ Ai+1] on {τi + t < τi+1},

where δz is the Dirac measure at z and ya denotes the constant trajectory
ya(t) := a, a ∈ E, t ≥ 0. In particular, under P(x,V ), we get Yτi = ξi and the
controlled process between the consecutive impulse times is Markov with the
original (uncontrolled) dynamics. In the following, we use E(x,V ) to denote the
expectation operator corresponding to P(x,V ), x ∈ E, V ∈ V.

It should be noted that the uncontrolled process X could be naturally
embedded in the controlled framework. In particular, we may identify X with
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some coordinate of the process X̂ given by (2.2.1) or with the result of the use
of the no impulse strategy, i.e. V = (τi, ξi)

∞
i=1 with τ1 ≡ +∞. Nevertheless,

with a slight abuse of notation, we use Px, x ∈ E, to denote the dynamics of
the uncontrolled process.

2.3 Entropic utility measure

In this section, we discuss the properties of the entropic utility measure and
the associated risk-sensitive criterion. We present some basic mathematical
properties and provide their economic interpretation. Also, in the end, we
comment on the standardised version of the risk-sensitive control problems
that are considered in this thesis. This section is based mainly on Bielecki and
Pliska (2003); see also Whittle (1990).

2.3.1 Generic properties

In this section, for simplicity, we fix some probability space (Ω,F ,P). Also,
we use L∞ to denote the family of essentially bounded random variables on
(Ω,F ,P). This space provides a framework for the definitions and properties
discussed in this section. It should be noted that most of them could be
extended to the unbounded case, assuming suitable regularity and integrability
conditions. Nevertheless, for transparency, we focus on L∞.

Let us now present the definition of the entropic utility measure.

Definition 2.3.1. The entropic utility of Z ∈ L∞ with the risk-aversion
parameter γ ∈ R is given by

Jγ(Z) :=

{
1
γ lnE [exp(γZ)] , γ 6= 0,

E [Z] , γ = 0.
(2.3.1)

Now, we provide a series of comments on this definition. First, note that in
the economic context, random variable Z corresponds to some (random) out-
come of an investment project (e.g. pay-off or rate of return corresponding to
some investment strategy) and Jγ(Z) could be used to measure an investor’s
satisfaction associated with Z. In this case, the parameter γ ∈ R corresponds
to a decision-maker risk-aversion. The case γ < 0 (respectively γ > 0) de-
scribes the preferences of the risk-averse (respectively risk-seeking) investor,
while γ = 0 corresponds to the risk-neutral preferences. Also, note that Jγ(Z)
for γ < 0 could be seen as the certainty equivalent for the exponential utility
function x 7→ Uγ(x) := 1

γ e
γx, γ < 0. Indeed, directly from the definition, we
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get Uγ(Jγ(Z)) = E[Uγ(Z)]. Thus, from the economic point of view, Jγ(Z)
could be linked to a constant (deterministic) pay-off, which utility is equal to
the expected utility of Z.

Second, in the optimisation context, Jγ could be used as an optimality
criterion quantifying the performance of some control affecting Z. In this case,
a decision-maker tries to find a strategy such that the entropic utility of the
resulting random variable Z is maximised. In the stochastic control literature,
the main focus is set on the case γ < 0 as this seems to provide a reasonable
explanation of investors’ behaviour. Typically, the functional Jγ with γ < 0 is
referred to as the risk-sensitive criterion. We refer to Howard and Matheson
(1972) for a seminal contribution on the use of Jγ in the optimisation context.

Third, as we show now, Jγ could be seen as a non-linear extension of
the classic mean-variance optimisation framework. To see this, recall that
the moment and cumulant generating functions of Z ∈ L∞ are given by
t 7→MZ(t) := E[etZ ] and t 7→ CZ(t) := lnMZ(t), respectively; see e.g. Section
9 in Billingsley (1995) for a comprehensive overview. Thus, directly from the
definition, we get Jγ(Z) = 1

γCZ(γ), γ 6= 0. Also, using the discussion following
Equation (9.7) in Billingsley (1995), we get that, in some neighbourhood of 0,
the map t 7→ CZ(t) could be expanded in the Taylor series of the form

CZ(t) =

∞∑
k=1

ck(Z)

k!
tk,

where ck(Z), k ∈ N∗, are the cumulants of the random variable Z. In partic-
ular, we get c1(Z) = E[Z], c2(Z) = Var[Z], and for small γ, we get

Jγ(Z) = E [Z] +
γ

2
Var[Z] +O(γ2). (2.3.2)

This formula highlights the connection between the entropic utility measure
and the linear-quadratic (mean-variance) approach of Markowitz (1952). In
fact, optimisation of Jγ could be seen as maximisation of the expected return
penalised for the risk associated with the investment project. However, in
contrast to the Markowitz approach, where the risk is measured only by the
variance, Jγ accounts also for the higher-order moments. This makes the
outcomes smoother and more stable, e.g. when a non-Gaussian framework
is considered. Also, note that, for a Gaussian random variable Z, we get
CZ(t) = tE[Z] + t2

2 Var[Z], t ∈ R. Thus, in (2.3.2) we get the equality for any
γ ∈ R even without O(γ2) term.

Let us now summarise some basic mathematical properties of Jγ . For
brevity, we focus on the risk-sensitive case. The properties follow directly
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from the definition and Jensen inequality; see e.g. Bielecki and Pliska (2003)
for details.

Proposition 2.3.2. Let γ < 0 and let Jγ be given by (2.3.1). Then:

(1) For any Z ∈ L∞, we get that the map (−∞, 0) 3 γ 7→ Jγ(Z) is increas-
ing. Also, we get Jγ(Z) ≤ E[Z], γ < 0.

(2) For any Z1, Z2 ∈ L∞ such that Z1 ≤ Z2, we get Jγ(Z1) ≤ Jγ(Z2).

(3) For any Z ∈ L∞ and a ∈ R, we get Jγ(Z + a) = Jγ(Z) + a.

(4) For any Z1, Z2 ∈ L∞ and α ∈ [0, 1], we get

Jγ(αZ1 + (1− α)Z2) ≥ αJγ(Z1) + (1− α)Jγ(Z2).

Let us now comment on the properties from Proposition 2.3.2. From (1),
we get that the satisfaction of an investor using Jγ , γ < 0, is bounded from
above by the satisfaction associated with the risk-neutral preferences. Next,
(2) states the monotonicity Jγ . Economically speaking, an investor using Jγ

as an investment criterion is more satisfied with the strategy resulting in the
(almost surely) greater profit. Next, (3) is linked to the cash-invariance of Jγ .
From the economic perspective, if one adds to the portfolio a units of cash, the
resulting satisfaction (measured by Jγ) increases by a. Finally, (4) states the
concavity of Jγ . For Z1 and Z2 corresponding to some investment portfolios (or
their rate of returns), (4) says that the satisfaction of the combined portfolio
αZ1 + (1 − α)Z2 (with some rate a) is greater than the averaged satisfaction
of the separate portfolios.

Properties (2)–(4) provides a link between the entropic utility measure and
the theory of risk measures. More specifically, we get that ργ(Z) := −Jγ(Z),
γ < 0, Z ∈ L∞, is a convex risk measure, i.e. a normalised, monotone,
cash-invariant, and convex functional that can be used to quantify the risk
associated with some portfolio; see e.g. Chapter 4 in Föllmer and Schied
(2016) for details. In fact, it can be shown that Jγ(Z) is essentially the
only functional resulting in the risk measure that is characterised by these
properties; see Kupper and Schachermayer (2009). In particular, we get that,
in the dynamic context, the entropic utility measure is time-consistent, which
facilitates the use of the dynamic programming principle; see e.g. Bielecki et al.
(2015).

Let us now comment on the connection between Jγ and the entropy (in-
formation content) of the probability distribution; see Proposition 2.3.3. Be-
fore we state the proposition, we introduce some auxiliary notation. We use
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M(Ω,F) to denote the family of probability measures on (Ω,F). Also, for
Q ∈M(Ω,F), let EQ denote the expectation operator corresponding to Q. Fi-
nally, for Q ∈M(Ω,F), we define H(Q,P) as the Kullback-Leibler divergence
(relative entropy) given by

H(Q,P) :=

{
EP
[
dQ
dP ln

(
dQ
dP

)]
, Q� P,

+∞, otherwise,

where Q� P means that Q is absolutely continuous with respect to P.

Now, we are ready to state Proposition 2.3.3. The proof can be found e.g.
in Lemma 3.29 in Föllmer and Schied (2016); see also Lemma A.1 in Bartl
(2019) for a discussion on the unbounded case.

Proposition 2.3.3. Let γ < 0 and let Jγ be given by (2.3.1). Then, for any
Z ∈ L∞, we get

Jγ(Z) = inf
Q∈M(Ω,F)

(
EQ(Z)− 1

γ
H(Q,P)

)
, γ 6= 0. (2.3.3)

Formula (2.3.3) could be seen as a variational representation of Jγ(Z)
and is linked to the Fenchel-Legendre transformation; see e.g. Section 3.2
in Föllmer and Schied (2016) for details. Also, it shows that maximisation of
Jγ could be seen as a maximin problem with a regularisation term related to
the relative entropy. We refer to Cherny and Maslov (2004) for further dis-
cussion on the connections between entropic utility measure and information
theory.

2.3.2 Standardised control problems

In this section, we comment on the specific formulation of the problems (1.0.3)
and (1.0.4), and their link to Jγ . We show that, for a fixed parameter γ < 0,
these problems could be expressed in a simpler, standardised form.

Recall that the first class of problems considered in this thesis is associated
with optimal stopping. More specifically, let ((Xt)t≥0, (Px)x∈E) be a continu-
ous time standard Cb-Feller-Markov process on (Ω,F ,F) with values in (E, E).
Also, let γ < 0 and let Jγx , x ∈ E, be a version of (2.3.1) with E replaced
by Ex. In this framework, given some running cost function ĝ and terminal
reward/cost function Ĝ, we consider problems of the form

sup
τ∈Tx

Jγx

(∫ τ

0
ĝ(Xs)ds+ Ĝ(Xτ )

)
, x ∈ E. (2.3.4)
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As we show now, for a fixed parameter γ < 0, this class of problems could
be expressed in a simpler form. More specifically, setting g(·) := γĝ(·) and
G(·) := γĜ(·), and recalling that γ < 0, we get that (2.3.4) is equivalent to

inf
τ∈Tx

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E. (2.3.5)

Thus, we get an optimal stopping problem in the multiplicative form. More
specific comments on (2.3.5) and its connection with the framework considered
in the literature can be found in Section 3.1.

The second class of problems considered in this thesis is linked to the
impulse control setting. For a continuous time standard Markov process X,
γ < 0, and an impulse control strategy V ∈ V, by Jγ(x,V ) we denote the version

of the entropic utility measure (1.0.2) corresponding to E(x,V ). In this context,
we consider problems of the form

sup
V ∈V

lim inf
T→∞

1

T
Jγ(x,V )

(∫ T

0
f̂(Ys)ds+

∞∑
i=1

1{τi≤T}ĉ(Yτ−i
, ξi)

)
, x ∈ E, (2.3.6)

where f̂ and ĉ are running reward/cost function and shift-cost function, re-
spectively. Setting f(·) := γf̂(·) and c(·, -) := γĉ(·, -), by analogy to (2.3.5),
we get that (2.3.6) is equivalent to

inf
V ∈V

lim sup
T→∞

1

T
lnE(x,V )

[
exp

(∫ T

0
f(Ys)ds+

∞∑
i=1

1{τi≤T}c(Yτ−i
, ξi)

)]
, x ∈ E.

(2.3.7)
More specific comments on this type of problems can be found in Section 4.1.

Problems (2.3.5) and (2.3.7) could be seen as the standardised versions
of the risk-sensitive functionals, where the risk-aversion parameter γ is not
used directly (apart from its sign). It should be noted that, in some cases,
the magnitude of γ is important, e.g. when the asymptotic behaviour of the
optimal value of some control problem is considered; see e.g. Menaldi and
Robin (2005). Nevertheless, the framework of this thesis allows us to consider
any γ < 0. Consequently, from now on we focus on the normalised problems
of the form (2.3.5) and (2.3.7) keeping in mind that they correspond to generic
problems (2.3.4) and (2.3.6).
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Chapter 3

Optimal stopping problems

In this chapter, we consider several forms of risk-sensitive optimal stopping
problems for Feller–Markov processes. Under suitable assumptions, we show
specific regularity properties of the optimal stopping value functions, including
continuity with respect to a starting point and various approximation schemes.
Also, we link the value functions to the specific form of the Bellman equation
and show that, in the unbounded framework, this equation may have multiple
solutions. Our analysis covers finite and infinite time horizons as well as
discrete and continuous time frameworks.

The structure of this chapter is as follows. In Section 3.1, we formally in-
troduce the problem and discuss the set of assumptions. Next, in Section 3.2,
we study discrete time optimal stopping problems. The main contribution of
this part is Theorem 3.2.6, where we link the discrete time Bellman equation
to the limits of the suitable finite time horizon stopping problems. In Sec-
tion 3.3, we study finite horizon continuous time optimal stopping problems.
In Theorem 3.3.2, we show that the corresponding value functions are con-
tinuous with respect to space and time variables. This is used in Section 3.4,
where we give a characterisation of solutions to the continuous time Bellman
equation; see Theorem 3.4.3 for details. Also, in Theorem 3.4.7, we show a
condition for the uniqueness of a solution to this equation. In Section 3.5, we
show various approximation results for the optimal stopping value functions.
For transparency, in Section A.1 and Section A.2 in Appendix A, we collect
some standard results for the optimal stopping problems that are used in this
chapter. Also, our results are illustrated by the examples presented in Chap-
ter 5. In particular, in Example 5.3.1 and Example 5.3.5 we show explicit
formulae for distinct solutions to the Bellman equation.

The results presented in this chapter are based mainly on Jelito et al.

23
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(2021) and Jelito and Stettner (2022). In particular, in the first paper we
showed some regularity properties of the optimal stopping problems in the
bounded framework. In the second paper we extended our analysis to the
unbounded setting and show that the corresponding Bellman equation may
admit multiple solutions. Also, note that in this chapter we provide some more
detailed comments on the arguments presented in the papers. In particular,
this applies to the proofs of Theorem 3.3.2 and Theorem 3.3.4.

3.1 Problem statement and assumptions

In this section, we state the main problem and introduce the notation and
assumptions used throughout this chapter. We focus on the continuous time
optimal stopping framework; the necessary modifications for the discrete time
case are discussed at the beginning of Section 3.2.

The main focus of this chapter is set on the infinite time horizon optimal
stopping problems. Let ((Xt)t≥0, (Px)x∈E) be a continuous time standard Cb-
Feller–Markov process on a filtered measurable space (Ω,F ,F) with values in
a state space (E, E). We consider

w(x) := inf
τ∈Tx

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E, (3.1.1)

w(x) := inf
τ∈Tx,b

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E, (3.1.2)

where g ∈ C+
b (E) and G ∈ C+(E) are a running cost function and a terminal

reward/cost function, respectively.
The map w describes the value of a standard risk-sensitive optimal stopping

problem; cf. (2.3.5). The map w may be seen as a version of w, when a decision-
maker is allowed to choose only bounded stopping times. Note that directly
from the fact Tx,b ⊂ Tx, x ∈ E, we get w(x) ≤ w(x), x ∈ E. In this chapter,
we show that both functions w and w are solutions to the associated optimal
stopping Bellman equation. In fact, we show that w and w are minimal and
maximal solutions to this equation, respectively, and, in general, we do not
have the equality between w and w; see Theorem 3.4.3 for details. It should be
noted that the non-uniqueness of a solution to the Bellman equation could be
associated with the unboundedness of G. In fact, in Theorem 3.4.11 we show
that when G is bounded, the Bellman equation admits a unique solution. A
more general condition for this property can be found in Theorem 3.4.7.

To obtain a proper regularity of the problems, throughout this chapter we
make the following assumptions:
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(A1) (Cost functions constraints). We have g ∈ C+
b (E) and G ∈ C+(E). Also,

the function g is bounded away from zero, i.e. for some c > 0 we have
g(·) ≥ c > 0.

(A2) (Integrability). For any x ∈ E and T ≥ 0, we have

Ex

[
sup
t∈[0,T ]

eG(Xt)

]
<∞. (3.1.3)

(A3) (Continuity). For any T ≥ 0 and h ∈ C+(E) satisfying h(x) ≤ G(x),
x ∈ E, it holds that the map

x 7→ Ex
[
exp

(∫ T

0
f(Xs)ds+ h(XT )

)]
(3.1.4)

is continuous.

(A4) (Distance control). For any compact set Γ ⊂ E, t0 > 0, and r0 > 0, we
have

lim
r→∞

MΓ(t0, r) = 0, lim
t→0

MΓ(t, r0) = 0, (3.1.5)

where MΓ(t, r) := supx∈Γ Px[sups∈[0,t] ρ(Xs, x) ≥ r], t, r > 0.

Let us now comment on these assumptions.

Assumption (A1) imposes several technical regularity properties on the
cost functions. First, note that the non-negativity assumption forG is merely a
technical normalisation. Indeed, for a generic G̃ ∈ C(E) which is bounded from
below, we may subtract the quantity infy∈E G̃(y) from both sides of (3.1.1)

and (3.1.2), and set G(·) := G̃(·)− infy∈E G̃(y) ∈ C+(E). Second, the assump-
tion g(·) ≥ c > 0 implies that allowing for infinite-valued stopping times in
the definition of w does not improve the optimal value; see Proposition 3.1.1
for details. Note that this condition is not needed in the finite time horizon
framework. Also, in Chapter 4 we show how to relax this assumption with
the help of the Multiplicative Poisson Equation; see Proposition 4.3.2 and the
following discussion for details.

Assumption (A2) guarantees integrability in the finite time horizon set-
ting and is a standard condition in the optimal stopping literature; see e.g.
condition (D.29) in Karatzas and Shreve (1998b).

Assumption (A3) gives the continuity of the specific exponential semigroup
for all unbounded functions h ∈ C+(E) that are majorised by G. Note that
from the Cb-Feller property, Proposition 2.1.8, and the monotone convergence
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theorem, we get that the map from (3.1.4) is lower semi-continuous for any
T ≥ 0 and h ∈ C+(E). Thus, in fact, in Assumption (A3) we impose the
upper semi-continuity of the map from (3.1.4).

Assumption (A4) facilitates distance control of the Markov process. The
property limr→∞MΓ(t0, r) = 0 implies that, for any fixed time horizon t0 > 0,
the process cannot get too far from the starting point, while the property
limt→0MΓ(t, r0) = 0 indicates that the process does not exhibit frequent sud-
den jumps on small time intervals. Both properties are satisfied if the under-
lying process is C0-Feller; see Proposition 2.1.7.

It should be noted that Assumptions (A2)–(A3) are automatically satis-
fied if G is bounded. In particular, Assumption (A3) follows from the Cb-Feller
property and Proposition 2.1.8. Further comments on these assumptions can
be found in Section 5.1. More specifically, in that section we show that As-
sumptions (A2)–(A3) can be deduced from a more general condition related
to the integrability of tails of a suitable random variable; see Lemma 5.1.1 for
details.

Now, let us comment on the link between our framework and settings
considered in the classic optimal stopping literature. In principle, by setting

Z(t) := e−
∫ t
0 r(Xs)dsh (Xt), t ≥ 0, with r(·) := −g(·) and h(·) := eG(·), the opti-

mal stopping problems associated with (3.1.1) and (3.1.2) might be embedded
into the classic (discounted) optimal stopping framework infτ Ex [Z(τ)]; see
e.g. Peskir and Shiryaev (2006). Nevertheless, in the classic approach, the
map r corresponds to the discount factor and usually it is assumed to be
strictly positive; see e.g. Robin (1978); Pham (2009), and references therein.
However, in our setting r is strictly negative; cf. Assumption (A1). Conse-
quently, the standard tools used in the discounted optimal stopping cannot be
directly applied. In particular, we do not get the integrability condition for
the value process Ex[supt≥0 |Zt|] <∞, x ∈ E, which is a standard tool in the
classic framework; see e.g. condition (2.2.1) in Peskir and Shiryaev (2006).

Problems associated with (3.1.1) and (3.1.2) could also be analysed using
state-space transformation. More specifically, we may introduce a new Markov
process X̃t := (

∫ t
0 g(Xs)ds,Xt), t ≥ 0, defined on an appropriately enlarged

state space and consider the problem infτ E[h(X̃τ )], where h(x, y) = ex+G(y);
see Peskir and Shiryaev (2006) or Getoor (1988) for a related concept of a
Markov process with creation. However, this approach does not use the spe-
cial structure of (3.1.1) and (3.1.2), and is associated with certain technical
difficulties; see Section 6 in Peskir and Shiryaev (2006) for further discus-
sion. Thus, to streamline the analysis, we decided to use a direct approach
which also facilitates better presentation of the results. Still, note that by
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exploiting the state-space transformation our results could be used to solve
time-inhomogeneous (time-dependent) problems; see Theorem 3.3.4 for de-
tails.

Let us now comment on the specific forms of the maps w and w given
by (3.1.1) and (3.1.2). In the context of infinite time horizon optimal stop-
ping, one needs to properly define the value of the process stopped at infinity.
Usually, allowing for infinite-valued stopping times facilitates the existence of
an optimal stopping rule. More specifically, let (Z(t)), t ≥ 0, be a stochastic
process on a filtered probability space (Ω,F , (Ft)t≥0,P), describing the associ-
ated pay-off. In most frameworks, the value of the process stopped at infinity
is defined as Z(∞) := lim infT→∞ Z(T ), which results in the optimal stopping
problem of the form

inf
τ∈T

E
[
Z(τ)1{τ<∞} + lim inf

T→∞
Z(T )1{τ=∞}

]
; (3.1.6)

see e.g. Equation (2) in Fakeev (1970) or Equation (2.5) in Shiryaev (1978).
If the process (Z(t)), t ≥ 0, is quasi left-continuous, Problem (3.1.6) could be
written in a compact form

inf
τ∈T

E
[
lim inf
T→∞

Z(τ ∧ T )

]
. (3.1.7)

Interchanging the limit and the expectation operator, we get an alternative
formulation

inf
τ∈T

lim inf
T→∞

E [Z(τ ∧ T )] ; (3.1.8)

see e.g. Equation (1) in Palczewski and Stettner (2014). In Proposition 3.1.1
we use the idea of (3.1.7) and (3.1.8) to give the alternative definitions of the
maps w and w. Also, we show that, in our framework, allowing for stopping
times that take the infinite value with positive probability does not improve
the optimal values of these problems. To simplify the notation, we set

Z(t) := exp

(∫ t

0
g(Xs)ds+G(Xt)

)
, t ≥ 0. (3.1.9)

Proposition 3.1.1. Let the maps w and w be given by (3.1.1) and (3.1.2),
respectively. Also, let the process Z be given by (3.1.9). Then:

(1) We get

w(x) = inf
τ∈Tx

lnEx
[
lim inf
T→∞

Z(τ ∧ T )

]
= inf

τ∈T
lnEx

[
lim inf
T→∞

Z(τ ∧ T )

]
, x ∈ E. (3.1.10)
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(2) We get

w(x) = inf
τ∈Tx

lim inf
T→∞

lnEx [Z(τ ∧ T )]

= inf
τ∈T

lim inf
T→∞

lnEx [Z(τ ∧ T )] , x ∈ E. (3.1.11)

Proof. For transparency, we prove the claims point by point.

Proof of (1). Note that, from the quasi left-continuity of X and the continuity
of G and g, we get that the process Z is quasi left-continuous. Thus, for any
τ ∈ T and x ∈ E, we get

lim inf
T→∞

Z(τ ∧ T ) = Z(τ)1{τ<∞} + lim inf
T→∞

Z(T )1{τ=∞}.

In particular, for τ ∈ Tx, we get Z(τ) = lim infT→∞ Z(τ ∧T ), which shows the
first equality in (3.1.10). For the second equality, note that, using Assump-
tion (A1), we get lim infT→∞ Z(T ) ≡ ∞. Thus, for any x ∈ E, we get that
any stopping time τ ∈ T such that Px[τ = ∞] > 0 cannot be optimal for the
problem infτ∈T lnEx [lim infT→∞ Z(τ ∧ T )]. Consequently, we get

inf
τ∈T

lnEx
[
lim inf
T→∞

Z(τ ∧ T )

]
= inf

τ∈Tx
lnEx

[
lim inf
T→∞

Z(τ ∧ T )

]
= w(x), x ∈ E,

which concludes the proof of this point.

Proof of (2). First, note that, using the boundedness of τ ∈ Tx,b and the fact
that Tx,b ⊂ Tx, x ∈ E, we get

w(x) = inf
τ∈Tx,b

lim inf
T→∞

lnEx [Z(τ ∧ T )]

≥ inf
τ∈Tx

lim inf
T→∞

lnEx [Z(τ ∧ T )] , x ∈ E. (3.1.12)

Second, let x ∈ E, ε > 0, and τε ∈ Tx be an ε-optimal stopping time for
infτ∈Tx lim infT→∞ lnEx [Z(τ ∧ T )]. Also, let (Tn) ⊂ R+ be a sequence such
that Tn →∞ as n→∞ and

lim
n→∞

lnEx [Z(τε ∧ Tn)] = lim inf
T→∞

lnEx [Z(τε ∧ T )] .

Then, noting that τε ∧ Tn ∈ Tx,b, n ∈ N, we get

w(x) ≤ lim
n→∞

lnEx [Z(τε ∧ Tn)]

= lim inf
T→∞

lnEx [Z(τε ∧ T )]

≤ inf
τ∈Tx

lim inf
T→∞

lnEx [Z(τ ∧ T )] + ε.
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Thus, letting ε→ 0, we get w(x) ≤ infτ∈Tx lim infT→∞ lnEx [Z(τ ∧ T )], x ∈ E.
Combining this with (3.1.12), we get the first equality in (3.1.11).

Finally, let x ∈ E and τ ∈ T be such that Px[τ = ∞] > 0. Then, using
Assumption A1, on the event {τ =∞}, we get lim infT→∞ Z(τ ∧T ) =∞ and,
using Fatou’s lemma, we get

∞ = Ex
[
lim inf
T→∞

Z(τ ∧ T )

]
≤ lim inf

T→∞
Ex [Z(τ ∧ T )] .

Thus, any stopping time τ ∈ T such that Px[τ = ∞] > 0 cannot be optimal
for the problem infτ∈T lim infT→∞ lnEx [Z(τ ∧ T )], x ∈ E. Consequently, we
get

inf
τ∈T

lim inf
T→∞

lnEx [Z(τ ∧ T )] = inf
τ∈Tx

lim inf
T→∞

lnEx [Z(τ ∧ T )] = w(x), x ∈ E,

which concludes the proof of this point.

Formulations (3.1.7) and (3.1.8) provide better understanding of the struc-
ture of (3.1.1) and (3.1.2). More specifically, using Proposition 3.1.1 and Fa-
tou’s lemma, for any x ∈ E, we get

w(x) = inf
τ∈T

Ex
[
lim inf
T→∞

Z(τ ∧ T )

]
≤ inf

τ∈T
lim inf
T→∞

Ex [Z(τ ∧ T )] = w(x).

Based on this formula we may deduce when the identity w ≡ w holds. More
specifically, we get that if, for a suitable class of stopping times τ and x ∈ E,
we get

Ex
[
lim inf
T→∞

Z(τ ∧ T )

]
= lim inf

T→∞
Ex [Z(τ ∧ T )]

then we get w(x) = w(x). In the following lemma we show a useful character-
isation of this condition.

Lemma 3.1.2. Let Z be given by (3.1.9). Also, let x ∈ E and τ ∈ Tx be a
stopping time satisfying Ex [Z(τ)] <∞. Then, the following are equivalent:

(1) We get

lim inf
T→∞

Ex [Z(τ ∧ T )] = Ex
[
lim inf
T→∞

Z(τ ∧ T )

]
.

(2) The family {Zτ∧T }, T ≥ 0, is Px-uniformly integrable, i.e.

lim
n→∞

sup
T≥0

Ex
[
1{Z(τ∧T )≥n}Z(τ ∧ T )

]
= 0.
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(3) We get
lim inf
T→∞

Ex
[
1{τ>T}Z(T )

]
= 0.

Proof. Note that the equivalence of (1) and (2) follows from the standard
result; see e.g. Theorem 16.14 in Billingsley (1995) for details. Thus, it is
enough to show that (1) is equivalent to (3). Using the identity

Ex [Z(τ ∧ T )] = Ex
[
1{τ≤T}Z(τ)

]
+ Ex

[
1{τ>T}Z(T )

]
, T ≥ 0, (3.1.13)

and noting that 1{τ≤T}Z(τ) increases to Z(τ) as T → ∞, by the monotone
convergence theorem and quasi the left-continuity of Z, we get

lim
T→∞

Ex
[
1{τ≤T}Z(τ)

]
= Ex [Z(τ)] = Ex

[
lim
T→∞

Z(τ ∧ T )

]
.

Thus, letting T →∞ in (3.1.13), we get

lim inf
T→∞

Ex [Z(τ ∧ T )] = Ex
[

lim
T→∞

Z(τ ∧ T )

]
+ lim inf

T→∞
Ex
[
1{τ>T}Z(T )

]
.

Consequently, recalling that Ex [limT→∞ Z(τ ∧ T )] = Ex [Z(τ)] < ∞, we get
that (1) is equivalent to (3), which concludes the proof.

We conclude this section with a comment on the equality between w and
w in the bounded framework.

Corollary 3.1.3. Let the maps w and w be given by (3.1.1) and (3.1.2),
respectively. If G ∈ C+

b (E), then we get w ≡ w.

Proof. Let x ∈ E and τ ∈ Tx be such that Ex
[
e
∫ τ
0 g(Xs)ds

]
< ∞. Recall-

ing (3.1.9) and the non-negativity of g, for any T ≥ 0, we get

Z(τ ∧ T ) ≤ e
∫ τ
0 g(Xs)dse‖G‖.

Thus, using Lebesgue’s dominated convergence theorem, we get the uniform
integrability of (Z(τ ∧ T )), T ≥ 0. Hence, from Lemma 3.1.2 and the quasi
left-continuity of Z, we get

lim inf
T→∞

Ex [Z(τ ∧ T )] = Ex
[
lim inf
T→∞

Z(τ ∧ T )

]
= Ex [Zτ ] . (3.1.14)

Also, note that, from the non-negativity of G, we get that the stopping time

τ ∈ Tx satisfying Ex
[
e
∫ τ
0 g(Xs)ds

]
=∞ cannot be optimal for w and w. Thus,

taking infimum over τ ∈ Tx in (3.1.14) and using Proposition 3.1.1, we get
w ≡ w, which concludes the proof.
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Remark 3.1.4. It should be noted that the statement of Corollary 3.1.3 may
not hold if G is unbounded from above. The specific examples can be found
in Section 5.3. ♦

3.2 Discrete time stopping

In this section, we consider discrete-time versions of the problems associated
with (3.1.1) and (3.1.2). We introduce a suitable form of the Bellman equa-
tion and show that the value functions of the corresponding optimal stopping
problems are its solutions. Also, we present certain results related to the finite
time horizon and dyadic optimal stopping.

In this section, by ((Xn)n∈N, (Px)x∈E) we denote a standard discrete-
time Cb-Feller-Markov process on (Ω,F ,F) with values in (E, E). By analogy
to (3.1.1) and (3.1.2), we define

w(x) := inf
τ∈T 0

x

lnEx

[
exp

(
τ−1∑
i=0

g(Xi) +G(Xτ )

)]
, x ∈ E, (3.2.1)

w(x) := inf
τ∈T 0

x,b

lnEx

[
exp

(
τ−1∑
i=0

g(Xi) +G(Xτ )

)]
, x ∈ E. (3.2.2)

We show specific regularity properties of the maps w and w and we link them
to suitable finite time horizon stopping problems. Also, at the end of this
section we return to the continuous time framework and comment on the
dyadic optimal stopping setting.

In this section we assume (A1) together with the following discrete time
versions of the conditions introduced in Section 3.1:

(A2′) (Integrability). For any n ∈ N and x ∈ E, we have Ex
[
eG(Xn)

]
<∞.

(A3′) (Continuity). For any n ∈ N and h ∈ C+(E) satisfying h(x) ≤ G(x),
x ∈ E, it holds that the map x 7→ Ex

[
eh(Xn)

]
is continuous.

Assumptions (A2′)–(A3′) could be seen as discrete time counterparts of (A2)–
(A3). Also, it should be noted that ifG is bounded, then, recalling the Cb-Feller
property, we get that (A2′) and (A3′) are automatically satisfied. Finally, note
that in this section we do not need any version of (A4).
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3.2.1 Discrete time Bellman equation

The results in this section are linked to properties of maps w ∈M+(E) satis-
fying the discrete time dynamic programming principle of the form

ew(x) = inf
τ∈T 0

Ex
[
e
∑τ∧n−1
i=0 g(Xi)+1{τ<n}G(Xτ )+1{τ≥n}w(Xn)

]
, x ∈ E, n ∈ N.

(3.2.3)
Typically, a solution to this equation could be linked to a value function of
some infinite time horizon optimal stopping problem. More specifically, Equa-
tion (3.2.3) could be seen as an identity quantifying the fact that the asso-
ciated optimisation problem could be split into two sub-periods: before the
time n ∈ N and after this moment. If a decision-maker decides to stop the
process before n, the pay-off consists of the cost for waiting (linked to g) and
the terminal reward/cost measured by G. If the decision-maker decides not
to stop the process before n, the pay-off consists of the cost for waiting and
w(Xn), which is the (averaged) optimal value of the problem restarted at Xn.
A more extensive discussion on the idea of the dynamic programming principle
in various optimisation contexts can be found e.g. in Hernandez-Lerma and
Lasserre (1996).

Due to the fact that in this section we act in the discrete time framework,
Equation (3.2.3) could be simplified to the discrete time Bellman equation of
the form

ew(x) = min(eG(x), eg(x)Ex[ew(X1)]), w ∈M+(E), x ∈ E; (3.2.4)

note that the equivalence of (3.2.3) and (3.2.4) is proved in Lemma 3.2.2. Also,
let us note that (3.2.4) could be expressed in the operator form as

ew(x) = Sew(x), w ∈M+(E), x ∈ E, (3.2.5)

where S : M+(E)→M+(E) is the Bellman operator given by

Sh(x) := min(eG(x), eg(x)Ex[h(X1)]), h ∈M+(E), x ∈ E. (3.2.6)

The use of this operator simplifies some arguments related to the Bellman
equation; see e.g. the proofs of Proposition 3.2.4 and Theorem 3.2.6.

Now, let us state a martingale characterisation of solutions to (3.2.4); see
Lemma 3.2.1. The proof is relatively standard; yet, we include it for complete-
ness.
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Lemma 3.2.1. Let w ∈M+(E) be a solution to (3.2.4) and let

zw(n) := exp

(
n−1∑
i=0

g(Xi) + w(Xn)

)
, n ∈ N, (3.2.7)

τw := inf{n ∈ N : w(Xn) = G(Xn)}. (3.2.8)

Then, for any x ∈ E, the process (zw(n)), n ∈ N, is a Px-submartingale and
(zw(τw ∧ n)), n ∈ N, is a Px-martingale.

Proof. First, note that directly from (3.2.4), we get eg(x)Ex
[
ew(X1)

]
≥ ew(x),

x ∈ E. Thus, using the Markov property, for any x ∈ E and n ∈ N, we get

Ex [zw(n+ 1)|Fn] = e
∑n−1
i=0 g(Xi)eg(Xn)EXn

[
ew(X1)

]
≥ e

∑n−1
i=0 g(Xi)ew(Xn) = zw(n),

which shows the submartingale property of (zw(n)), n ∈ N.

Second, note that from (3.2.4), on the event {τw > n}, we get

ew(Xn) = eg(Xn)EXn
[
ew(X1)

]
.

Thus, for any x ∈ E and n ∈ N, we get

Ex[zw(τw ∧ (n+ 1))|Fn]

= 1{τw≤n}zw(τw) + 1{τw>n}e
∑n
i=0 g(Xi)Ex

[
ew(Xn+1)|Fn

]
= 1{τw≤n}zw(τw) + 1{τw>n}e

∑n−1
i=0 g(Xi)eg(Xn)EXn

[
ew(X1)

]
= 1{τw≤n}zw(τw ∧ n) + 1{τw>n}e

∑τw∧n−1
i=0 g(Xi)ew(Xτw∧n)

= zw(τw ∧ n),

which concludes the proof.

In Lemma 3.2.2 we show that (3.2.3) and (3.2.4) are equivalent.

Lemma 3.2.2. A map w ∈ M+(E) is a solution to (3.2.3) if and only if it
is a solution to (3.2.4).

Proof. First, let w ∈ M+(E) be a solution to (3.2.4). Also, let the process
(zw(n)), n ∈ N, be given by (3.2.7). Then, using Lemma 3.2.1 and Doob’s
optional stopping theorem, we get that, for any stopping time τ ∈ T 0, the
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process (zw(τ∧n)), n ∈ N, is a submartingale. Then, noting that, from (3.2.4),
we get w(·) ≤ G(·), for any x ∈ E and n ∈ N, we get

ew(x) ≤ inf
τ∈T 0

Ex[zw(τ ∧ n)]

= inf
τ∈T 0

Ex
[
e
∑τ∧n−1
i=0 g(Xi)+w(Xτ∧n)

]
≤ inf

τ∈T 0
Ex
[
e
∑τ∧n−1
i=0 g(Xi)+1{τ<n}G(Xτw )+1{τ≥n}w(Xn)

]
. (3.2.9)

Also, using again Lemma 3.2.1, we get that the process (zw(τw ∧ n)), n ∈ N,
is a martingale, where τw is given by (3.2.8). Thus, noting that, on the event
{τw < n}, we get w(Xτw) = G(Xτw), for any x ∈ E and n ∈ N, we also get

ew(x) = Ex[zw(τw ∧ n)]

= Ex
[
e
∑τw∧n−1
i=0 g(Xi)+w(Xτw∧n)

]
= Ex

[
e
∑τw∧n−1
i=0 g(Xi)+1{τw<n}G(Xτ )+1{τw≥n}w(Xn)

]
.

Combining this with (3.2.9), for any x ∈ E and n ∈ N, we get

ew(x) = inf
τ∈T 0

Ex
[
e
∑τ∧n−1
i=0 g(Xi)+1{τ<n}G(Xτ )+1{τ≥n}w(Xn)

]
.

Thus, the map w satisfies (3.2.3).

Second, let w ∈ M+(E) be a solution to (3.2.3). Then, setting n = 1
in (3.2.3), we get

ew(x) = inf
τ∈T 0

Ex
[
e
∑τ∧1−1
i=0 g(Xi)+1{τ<1}G(Xτ )+1{τ≥1}w(Xn)

]
, x ∈ E.

In particular, we get that we may restrict our attention to stopping times
τ ∈ T 0 such that τ ∈ {0, 1}. Thus, using Blumenthal’s zero-one law, we get

ew(x) = min(eG(x), eg(x)Ex[ew(X1)]), x ∈ E.

Hence, the map w is a solution to (3.2.4).

Remark 3.2.3. Note that the proofs of Lemma 3.2.1 and Lemma 3.2.2 are
valid even if we consider a generic g ∈ Cb(E). In particular, we do not need
the condition g(·) ≥ c > 0. ♦
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3.2.2 Solution to the problem

Now, we focus on the construction of solutions to (3.2.4). In particular, we
show that the value functions from (3.2.1) and (3.2.2) are solutions to this
equation. In this way we obtain some regularity properties of w and w.

We start with finding the minimal and maximal solutions to (3.2.4). Re-
calling the non-negativity of the functions g and G, we get

0 ≤ w(x) ≤ w(x) ≤ G(x), x ∈ E.

Thus, to get the extremal solutions to (3.2.4), we iterate the operator S given
by (3.2.6) on the lower and upper bounds of w and w. More specifically, we
recursively define the families of functions (wn)n∈N and (wn)n∈N by

w0(x) := 0, wn+1(x) := lnSewn(x), n ∈ N, x ∈ E, (3.2.10)

w0(x) := G(x), wn+1(x) := lnSewn(x), n ∈ N, x ∈ E. (3.2.11)

In Theorem 3.2.6 we show that the limits limn→∞wn and limn→∞wn are well
defined and solve (3.2.5). Before we do this, in Proposition 3.2.4, we show
that the sequences (wn) and (wn) could be linked to the value functions of
finite time horizon optimal stopping problems. Note that in the proposition,
infτ≤n denotes the infimum over the family of stopping times with values in
{0, 1, . . . , n}.

Proposition 3.2.4. For any n ∈ N, let the maps wn and wn be given by (3.2.10)
and (3.2.11), respectively. Then:

(1) We get

wn(x) = inf
τ≤n

lnEx
[
e
∑τ−1
i=0 g(Xi)+1{τ<n}G(Xτ )

]
, n ∈ N, x ∈ E. (3.2.12)

Also, for any x ∈ E, the sequence (wn(x)) is increasing and, for any
n ∈ N, the map x 7→ wn(x) is continuous. Next, for any n ∈ N and
x ∈ E, the stopping time

τn := inf
{
k ∈ N : wn−k(Xk) = G(Xk)

}
∧ n (3.2.13)

is optimal for wn(x). Moreover, for any n ∈ N and x ∈ E, the process

zn(k) := e
∑k−1
i=0 g(Xi)+wn−k(Xk), k = 0, . . . , n,

is a Px-submartingale and (zn(τn∧k)), k = 0, . . . , n, is a Px-martingale.
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(2) We get

wn(x) = inf
τ≤n

lnEx
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
, n ∈ N, x ∈ E. (3.2.14)

Also, for any x ∈ E, the sequence (wn(x)) is decreasing and, for any
n ∈ N, the map x 7→ wn(x) is continuous. Next, for any n ∈ N and
x ∈ E, the stopping time

τn := inf {k ∈ N : wn−k(Xk) = G(Xk)} (3.2.15)

is optimal for wn(x). Moreover, for any n ∈ N and x ∈ E, the process

zn(k) := e
∑k−1
i=0 g(Xi)+wn−k(Xk), k = 0, . . . , n,

is a Px-submartingale and (zn(τn∧k)), k = 0, . . . , n, is a Px-martingale.

Proof. First, we show the properties of wn. Identity (3.2.12), the optimality
of τn and the martingale characterisation follow from Proposition A.1.1 used
with h ≡ 0. The monotonicity of wn(x) follows from an induction argument.
Indeed, since g(·) ≥ 0 and G(·) ≥ 0, we get

ew1(x) = eg(x)Ex
[
ew0(X1)

]
∧ eG(x) ≥ 1 = ew0(x), x ∈ E.

Thus, assuming that, for some n ∈ N, we get wn+1(x) ≥ wn(x), x ∈ E, and,
using the monotonicity of S, we get

ewn+2(x) = Sewn+1(x) ≥ Sewn(x) = ewn+1(x), x ∈ E.

Also, recursively using (3.2.10) and Assumption (A3′), we get the continuity
of x 7→ wn(x) for any n ∈ N.

Second, we focus on wn. To get (3.2.14), the optimality of τn and the
martingale characterisation, it is enough to use again Proposition A.1.1 with
h ≡ G. Also, from (3.2.11) and Assumption (A3′), we get the continuity of
x 7→ wn(x) for any n ∈ N. Finally, the monotonicity of n 7→ wn(x), x ∈ E,
follows from the fact that in (3.2.14), when we increase n, we also increase the
family of stopping times that we minimise over.

Remark 3.2.5. Note that in the proof of Proposition 3.2.4, Assumption (A3′)
was used only to show the continuity property. In fact, the remaining claims
hold true even if we omit this assumption and the Cb-Feller property of the
process. ♦
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Based on the monotonicity properties stated in Proposition 3.2.4, we get
that the limits limn→∞wn(x) and limn→∞wn(x), x ∈ E, are well defined. In
fact, in Theorem 3.2.6 we link these limits to the maps w and w and show
that they satisfy the Bellman equation.

Theorem 3.2.6. Let the maps w and w be given by (3.2.1) and (3.2.2), re-
spectively. Also, for any n ∈ N, let the maps wn and wn be given by (3.2.10)
and (3.2.11), respectively. Then:

(1) For any x ∈ E, we get

w(x) = lim
n→∞

wn(x) and w(x) = lim
n→∞

wn(x).

Also, w is lower semi-continuous and w is upper semi-continuous.

(2) The maps w and w are solutions to (3.2.4).

(3) For any solution w ∈ M+(E) to the Bellman equation (3.2.4), we get
w(·) ≤ w(·) ≤ w(·).

Proof. For transparency, we split the proof into three steps: (1) proof of
w(x) = limn→∞wn(x), x ∈ E, the fact that w satisfies (3.2.4), and the lower
semi-continuity of w; (2) proof of w(x) = limn→∞wn(x), x ∈ E, the fact that
w satisfies (3.2.4), and the upper semi-continuity of w; (3) proof that w and
w are minimal and maximal solutions to the Bellman equation, respectively.

Step 1. We show that w(x) = limn→∞wn(x), x ∈ E, the map w sat-
isfies (3.2.4), and is lower semi-continuous. Using the monotonicity property
from Proposition 3.2.4, we get that the map ŵ(x) := limn→∞wn(x), x ∈ E,
is well defined. Also, letting n → ∞ in (3.2.10) and using (3.2.5), we get
that ŵ is a solution to (3.2.4). Next, using Proposition 3.2.4 and recalling the
non-negativity of g and G, for any n ∈ N and x ∈ E, we get

ewn(x) = inf
τ∈T 0

x

Ex
[
e
∑τ∧n−1
i=0 g(Xi)+1{τ<n}G(Xτ )

]
≤ inf

τ∈T 0
x

Ex
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= ew(x).

Thus, letting n→∞, we get ŵ ≤ w. Now, let us define

z(n) := exp

(
n−1∑
i=0

g(Xi) + ŵ(Xn)

)
, n ∈ N, (3.2.16)

τ := inf{n ∈ N : ŵ(Xn) = G(Xn)}, (3.2.17)
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and note that, by Lemma 3.2.1, the process (z(τ ∧n)), n ∈ N, is a martingale.
Also, noting that ŵ(·) ≥ 0, recalling that g(·) ≥ c > 0, and using Fatou’s
lemma, for any x ∈ E, we get

Ex [eτc] = Ex
[
lim inf
n→∞

e(τ∧n)c
]
≤ Ex

[
lim inf
n→∞

e
∑τ∧n−1
i=0 g(Xi)+ŵ(Xτ∧n)

]
≤ lim inf

n→∞
Ex
[
e
∑τ∧n−1
i=0 g(Xi)+ŵ(Xτ∧n)

]
= Ex [z(0)] = eŵ(x) ≤ eG(x) <∞.

In particular, we get Px[τ <∞] = 1 and τ ∈ T 0
x for any x ∈ E. Thus, noting

that ŵ(Xτ ) = G(Xτ ), we get

ew(x) ≤ Ex
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= Ex

[
e
∑τ−1
i=0 g(Xi)+ŵ(Xτ )

]
= Ex

[
lim inf
n→∞

e
∑τ∧n−1
i=0 g(Xi)+ŵ(Xτ∧n)

]
≤ lim inf

n→∞
Ex
[
e
∑τ∧n−1
i=0 g(Xi)+ŵ(Xτ∧n)

]
= Ex [z(0)] = eŵ(x), (3.2.18)

hence w ≡ ŵ. Also, recalling that ŵ solves (3.2.4), we get that w is a solution
to the Bellman equation. Finally, noting that, by Proposition 3.2.4, the map
w is the increasing limit of the continuous functions, we get that w is lower
semi-continuous, which concludes the proof of this step.

Step 2. We show that w(x) = limn→∞wn(x), x ∈ E, the map w sat-
isfies (3.2.4), and is upper semi-continuous. Using a discrete time version of
Proposition 3.1.1, we get

w(x) = inf
τ∈T 0

x

lim inf
k→∞

lnEx
[
e
∑τ∧k−1
i=0 g(Xi)+G(Xτ∧k)

]
, x ∈ E. (3.2.19)

Thus, recalling Proposition 3.2.4, for any n ∈ N and x ∈ E, we get

ew(x) ≤ inf
τ≤n

lim inf
k→∞

Ex
[
e
∑τ∧k−1
i=0 g(Xi)+G(Xτ∧k)

]
= inf

τ≤n
Ex
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= ewn(x).

Consequently, letting n→∞, we get w(x) ≤ limn→∞wn(x), x ∈ E. Also, for
any n ∈ N and τ̂ ∈ T 0

x , we get

inf
τ≤n

Ex
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
≤ Ex

[
e
∑τ̂∧n−1
i=0 g(Xi)+G(Xτ̂∧n)

]
.
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Thus, letting n → ∞, taking infimum over τ̂ ∈ T 0
x , and recalling (3.2.19), we

get limn→∞wn(x) ≤ w(x), x ∈ E, and consequently limn→∞wn(x) = w(x),
x ∈ E. Also, letiing n→∞ in (3.2.11), we get that limn→∞wn solves (3.2.4).
Thus, the map w is a solution to the Bellman equation and, as the decreasing
limit of the continuous functions x 7→ wn(x), is upper semi-continuous, which
concludes the proof of this step.

Step 3. We show that w and w are minimal and maximal solution to
the Bellman equation. Let w ∈ M+(E) be a solution to (3.2.4). In partic-
ular, recalling the operator S given by (3.2.6), we get ew(·) = Sew(·) and
0 ≤ w(·) ≤ G(·). Then, recursively applying the operator S and recall-
ing (3.2.10) and (3.2.11), for any n ∈ N, we get wn(·) ≤ w(·) ≤ wn(·). Thus,
letting n→∞, we get w(·) ≤ w(·) ≤ w(·), which concludes the proof.

Remark 3.2.7. It should be noted that if we omit Assumption (A3′), all claims
of Theorem 3.2.6 remain valid, except for the semi-continuity properties of w
and w; see Remark 3.2.5 for a similar discussion. ♦

Remark 3.2.8. In Theorem 3.2.6 we showed that both w and w satisfy the
Bellman equation. A priori, we might suspect that these maps are identi-
cal. However, in Example 5.3.1 we show that in general w 6= w. Sufficient
conditions for the identity w ≡ w are discussed in Theorem 3.2.11. ♦

Remark 3.2.9. From Theorem 3.2.6 we deduce that, in the unbounded case,
the family of finite time horizon stopping problems may not converge to their
infinite time horizon versions. More specifically, from Proposition 3.2.4, we
get that the map

wn(x) = inf
τ≤n

lnEx
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
, n ∈ N, x ∈ E,

may be seen as a finite time horizon counterpart of

w(x) = inf
τ∈T 0

x

lnEx
[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
, x ∈ E,

with stopping times bounded by n ∈ N. Thus, one might conjecture that wn
converges to w as n → ∞. However, from Theorem 3.2.6, we get wn → w as
n → ∞, where w is given by (3.2.2), and from Example 5.3.1 we see that in
general w 6= w. Also, note that Theorem 3.2.6 provides a finite time horizon
approximation scheme for w; this can be done with the help of the family wn
from (3.2.10). ♦

From the proof of Theorem 3.2.6, we get a useful corollary about an optimal
stopping time for w.
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Corollary 3.2.10. Let the map w be given by (3.2.1). Then, for any x ∈ E,
the stopping time

τ = inf{n ∈ N : w(Xn) = G(Xn)} ∈ T 0
x (3.2.20)

is optimal for w(x).

Proof. This follows directly from (3.2.18); note that there we also showed that
τ ∈ T 0

x , x ∈ E.

Now we formulate a sufficient condition for the identity w = w. Recalling
Theorem 3.2.6, we get that in this case the Bellman equation (3.2.4) admits a
unique solution. To simplify the notation, we define the process

Z(n) := exp

(
n−1∑
i=0

g(Xi) +G(Xn)

)
, n ∈ N. (3.2.21)

Theorem 3.2.11. Let the maps w and w be given by (3.2.1) and (3.2.2),
respectively. Also, let τ and (Z(n)), n ∈ N, be given by (3.2.20) and (3.2.21),
respectively. If, for any x ∈ E, the process (Z(τ ∧ n)), n ∈ N, is Px-uniformly
integrable, then we get w ≡ w.

Proof. Recall that, by Corollary 3.2.10, the stopping time τ is optimal for
w(x), x ∈ E. In particular, we get τ ∈ T 0

x , x ∈ E. Then, using a discrete
time version of Proposition 3.1.1 and the uniform integrability of (Z(τ ∧ n)),
n ∈ N, for any x ∈ E, we get

ew(x) ≤ lim
n→∞

Ex
[
e
∑τ∧n−1
i=0 g(Xi)+G(Xτ∧n)

]
= Ex

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= ew(x).

Recalling that we always get w ≤ w, we conclude the proof.

Remark 3.2.12. Let τ := inf{t ≥ 0 : w(Xt) = G(Xt)}. Based on the condition
from Theorem 3.2.11, one may ask if the uniform integrability of (Z(τ ∧n)) is
also sufficient for w ≡ w. However, as discussed in Remark 5.3.3, this is not
the case. ♦

As we show in Proposition 3.2.13, the uniform integrability condition from
Theorem 3.2.11 is satisfied e.g. for a bounded terminal cost function G.

Proposition 3.2.13. Let G ∈ C+
b (E). Then, for any x ∈ E, the process

(Z(τ ∧ n)), n ∈ N, from Theorem 3.2.11, is Px-uniformly integrable.
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Proof. Recalling Corollary 3.2.10, we get that the stopping time τ is optimal
for w. In particular, recalling the non-negativity of G, for any x ∈ E, we get

Ex
[
e
∑τ−1
i=0 g(Xi)

]
≤ Ex

[
e
∑τ−1
i=0 g(Xi)+G(Xτ )

]
= ew(x) ≤ eG(x) <∞.

Then, recalling the non-negativity of g, noting that Z(n∧τ) ≤ e
∑τ−1
i=0 g(Xi)e‖G‖,

n ∈ N, and using Lebesgue’s dominated convergence theorem, we get the
Px-uniform integrability of (Z(n ∧ τ)) for any x ∈ E, which concludes the
proof.

For ease of reference, in Theorem 3.2.14 we summarise the properties of
the optimal stopping problems with a bounded terminal cost function G. In
this case, we get a unique solution to the Bellman equation, which can be used
to prove the continuity of the value functions w and w.

Theorem 3.2.14. Let G ∈ C+
b (E) and let the maps w and w be given by (3.2.1)

and (3.2.2), respectively. Also, let w ∈ M+(E) be a solution to the Bellman
equation (3.2.4). Then, we get

w ≡ w ≡ w ∈ C+
b (E).

Also, for any x ∈ E, the stopping time

τ = inf{n ∈ N : w(Xn) = G(Xn)} ∈ T 0
x

is optimal for w. Moreover, for any x ∈ E, the process

zw(n) := exp

(
n−1∑
i=0

g(Xi) + w(Xn)

)
, n ∈ N

is a Px-submartingale and (zw(τ ∧ n)), n ∈ N, is a Px-martingale.

Proof. Using Proposition 3.2.13 and Theorem 3.2.11, we get w ≡ w. This,
combined with Theorem 3.2.6, shows the uniqueness of a solution to the Bell-
man equation (3.2.4). Also, using the semi-continuity properties from Theo-
rem 3.2.6, we get that w ≡ w ∈ C+

b (E). Finally, recalling Corollary 3.2.10 and
Lemma 3.2.1, we conclude the proof.

3.2.3 Dyadic optimal stopping

Now, we show some results related to the dyadic optimal stopping problem.
In this case we consider a continuous time process, but the stopping times are
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restricted to a discrete time-grid. This provides a link between discrete and
continuous time settings. Throughout this section ((Xt)t≥0, (Px)x∈E) denotes
a continuous time standard Cb-Feller–Markov process on (Ω,F ,F) with values
in (E, E). Also, recall the time step δm := 1

2m and the respective families of
stopping times T mx and T mx,b, m ∈ N, x ∈ E, from Section 2.1.

By analogy to (3.2.6) and (3.2.5), for any m ∈ N, we define the dyadic
Bellman operator and the Bellman equation

Smh(x) := min(eG(x),Ex[e
∫ δm
0 g(Xs)dsh(Xδm)]), h ∈M+(E), x ∈ E,

(3.2.22)

ew(x) = Smew(x), w ∈M+(E), x ∈ E, (3.2.23)

respectively. The properties of a solution to the Bellman equation (3.2.23) are
summarised in Theorem 3.2.15. In the theorem, for simplicity, we restrict our
attention to a bounded terminal cost function G and we assume only (A1).
The unbounded case, under some regularity assumptions, could be treated
using similar logic.

Theorem 3.2.15. Let G ∈ C+
b (E), m ∈ N, and let wm ∈M+(E) be a solution

to (3.2.23). Then, we get

wm(x) = inf
τ∈T mx

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
= inf

τ∈T mx,b
lnEx

[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E.

Also, for any x ∈ E, the stopping time

τm := δm · inf{n ∈ N : wm(Xnδm) = G(Xnδm)} ∈ T m

is optimal for wm(x).

Proof. The proof follows the lines of the argument leading to Theorem 3.2.14,
thus we provide only an outline. Fix some m ∈ N. By analogy to (3.2.10)
and (3.2.11), we define

wm0 (x) := 0, wmn+1(x) := lnSmew
m
n (x), n ∈ N, x ∈ E, (3.2.24)

wm0 (x) := G(x), wmn+1(x) := lnSmew
m
n (x), n ∈ N, x ∈ E. (3.2.25)
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As in Proposition 3.2.4, we may show that

wmn (x) = inf
τ≤nδm
τ∈T mx

lnEx
[
e
∫ τ
0 g(Xs)ds+1{τ<nδm}G(Xτ )

]
, n ∈ N, x ∈ E,

wmn (x) = inf
τ≤nδm
τ∈T mx

lnEx
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
, n ∈ N, x ∈ E,

and the maps x 7→ wmn (x) and x 7→ wmn (x) are continuous; note that the
continuity property follows from (3.2.24)–(3.2.25), the Cb-Feller property, and
Proposition 2.1.8.

Next, as in Theorem 3.2.6, we may show that limn→∞w
m
n (x) = wm(x),

x ∈ E, and limn→∞w
m
n (x) = wm(x), x ∈ E, where

wm(x) := inf
τ∈T mx

lnEx
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
, n ∈ N, x ∈ E,

wm(x) := inf
τ∈T mx,b

lnEx
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
, n ∈ N, x ∈ E.

Also, the maps x 7→ wm(x) and x 7→ wm(x) are lower semi-continuous and
upper semi-continuous, respectively. Moreover, letting n → ∞ in (3.2.24)–
(3.2.25), we get that wm and wm are solutions to (3.2.23). Furthermore, as in
Theorem 3.2.11 and Proposition 3.2.13, we show that from the boundedness of
G, we get wm ≡ wm. Thus, there is a unique solution to the dyadic Bellman
equation (3.2.23) and this solution is continuous. The optimality of τm could
be shown by the argument used in Corollary 3.2.10.

3.3 Finite time horizon continuous time stopping

In this section, we consider finite time horizon continuous time optimal stop-
ping problems. We show the continuity of the corresponding value functions
with respect to a time horizon and a starting point of the process. Next, we
give a characterisation of optimal stopping times. Also, at the end of this
section we show how to extend our results to the case where the cost functions
depend on time.

3.3.1 Time-homogeneous case

In this section, ((Xt)t≥0, (Px)x∈E) is a continuous time standard Cb-Feller-
Markov process on (Ω,F ,F) with values in (E, E). Our main focus is set
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on the finite time horizon continuous time optimal stopping problems. More
specifically, by analogy to (3.2.12) and (3.2.14), for any T ≥ 0, we define

wT (x) := inf
τ≤T

lnEx
[
exp

(∫ τ

0
g(Xs)ds+ 1{τ<T}G(Xτ )

)]
, x ∈ E, (3.3.1)

wT (x) := inf
τ≤T

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E. (3.3.2)

where infτ≤T denotes the infimum over stopping times with values in [0, T ].

In this section we assume (A1)–(A4). However, it should be noted that
here we do not need the condition g(·) ≥ c > 0 from (A1). Also, for (3.3.1),
we may consider a generic g ∈ Cb(E), i.e. to study properties of the map
(T, x) 7→ wT (x) we do not need the non-negativity condition of g; see Re-
mark 3.3.3 for details.

We start with a useful convergence result for the terminal cost function. In
a nutshell, it says that, for a boundedG, a finite time horizon T ≥ 0, a stopping
time τ ≤ T , and a family of stopping times (τn) decreasing uniformly to τ ,
we get Ex

∣∣eG(Xτn ) − eG(Xτ )
∣∣ → 0 as n → ∞, and the convergence is uniform

with respect to x from some compact set and the choice of τ and (τn). In
the proof of this result we extensively use the distance control properties from
Assumption (A4).

Lemma 3.3.1. Let G ∈ C+
b (E). Let (an) be a sequence of non-negative num-

bers such that an ↓ 0 as n→∞. For any bounded stopping time τ ∈ T , let us
define T (τ, an) := {σ ∈ T : 0 ≤ σ− τ ≤ an}, n ∈ N. Then, for any T ≥ 0 and
a compact set Γ ⊂ E, we get

lim
n→∞

sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex
∣∣∣eG(Xσ) − eG(Xτ )

∣∣∣ = 0.

Proof. Let T ≥ 0, Γ ⊂ E be a compact set, and ε > 0. Using Assumption (A4),
we get that there exists R > 0 such that

sup
x∈Γ

Px

[
sup
t∈[0,T ]

ρ(Xt, x) ≥ R

]
≤ ε. (3.3.3)
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For brevity, we set Z(t, s) :=
∣∣eG(Xt) − eG(Xs)

∣∣, t, s ≥ 0. By (3.3.3), we get

sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex [Z(σ, τ)]

≤ sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex
[
1{ρ(Xτ ,x)≥R}Z(σ, τ) + 1{ρ(Xτ ,x)<R}Z(σ, τ)

]
≤ 2εe‖G‖ + sup

x∈Γ
sup
τ≤T

σ∈T (τ,an)

Ex
[
1{ρ(Xτ ,x)<R}Z(σ, τ)

]
. (3.3.4)

Set B := {x ∈ E : ρ(Γ, x) ≤ R+ 1}. Since eG(·) is uniformly continuous on B,
we can find r > 0 such that

sup
y,z∈B : ρ(y,z)≤r

∣∣∣eG(y) − eG(z)
∣∣∣ ≤ ε. (3.3.5)

Recalling that an ↓ 0 and using Assumption (A4), we may find n0 ∈ N such
that, for any n ≥ n0, we get

sup
x∈B

Px

[
sup

t∈[0,an]
ρ(Xt, x) ≥ r

]
≤ ε. (3.3.6)

Also, using the strong Markov property and the fact that for σ ∈ T (τ, an) we
get 0 ≤ σ − τ ≤ an, we get

sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex
[
1{ρ(Xτ ,x)<R}Z(σ, τ)

]

≤ sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex

[
1{ρ(Xτ ,x)<R} EXτ

[
sup

t∈[0,an]
Z(t, 0)

]]
.

Thus, recalling (3.3.5) and (3.3.6), for n ≥ n0, we get

Ex

[
1{ρ(Xτ ,x)<R} EXτ

[
1{supt∈[0,an] ρ(Xt,X0)<r} sup

t∈[0,an]
Z(t, 0)

]]
≤ ε,

Ex

[
1{ρ(Xτ ,x)<R} EXτ

[
1{supt∈[0,an] ρ(Xt,X0)≥r} sup

t∈[0,an]
Z(t, 0)

]]
≤ 2εe‖G‖,

where the upper bounds are uniform with respect to x ∈ Γ, τ ≤ T , and
σ ∈ T (τ, an). Consequently, for n ≥ n0, we get

sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex
[
1{ρ(Xτ ,x)<R}Z(σ, τ)

]
≤ ε+ 2εe‖G‖. (3.3.7)
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Combining (3.3.4) with (3.3.7), for n ≥ n0, we get

sup
x∈Γ

sup
τ≤T

σ∈T (τ,an)

Ex
∣∣∣eG(Xσ) − eG(Xτ )

∣∣∣ ≤ ε(4e‖G‖ + 1), (3.3.8)

which concludes the proof.

In Theorem 3.3.2 we show the properties of the maps (T, x) 7→ wT (x) and
(T, x) 7→ wT (x). This may be seen as a continuous time version of Proposi-
tion 3.2.4.

Theorem 3.3.2. For any T ≥ 0, let the maps wT and wT be given by (3.3.1)
and (3.3.2), respectively. Then:

(1) The map (T, x) 7→ wT (x) is jointly continuous and, for any x ∈ E, the
map T 7→ wT (x) is increasing. Also, for any T ≥ 0 and x ∈ E, the
stopping time

τT := inf
{
t ≥ 0 : wT−t(Xt) = G(Xt)

}
∧ T (3.3.9)

is optimal for wT (x). Moreover, for any T ≥ 0 and x ∈ E, the process

zT (t) := e
∫ t∧T
0 g(Xs)ds+wT−t∧T (Xt∧T ), t ≥ 0, (3.3.10)

is a Px-submartingale and (zT (τT ∧ t)), t ≥ 0, is a Px-martingale.

(2) The map (T, x) 7→ wT (x) is jointly continuous and, for any x ∈ E, the
map T 7→ wT (x) is decreasing. Also, for any T ≥ 0 and x ∈ E, the
stopping time

τT := inf {t ≥ 0 : wT−t(Xt) = G(Xt)} (3.3.11)

is optimal for wT (x). Moreover, for any T ≥ 0 and x ∈ E, the process

zT (t) := e
∫ t∧T
0 g(Xs)ds+wT−t∧T (Xt∧T ), t ≥ 0,

is a Px-submartingale and (zT (τT ∧ t)), t ≥ 0, is a Px-martingale.

Proof. The proof is relatively complex, thus we start with some general com-
ments and the outline of the structure of the argument.

First, we show the monotonicity properties of T 7→ wT (x) and T 7→ wT (x)
with a fixed x ∈ E. To see that the map T 7→ wT (x) is decreasing, it is enough
to note that, when we increase T , we also increase the family of stopping times
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that we minimise over. Also, note that for this property we do not need the
non-negativity of g. To see that T 7→ wT (x) is increasing, let T ≥ 0, u ∈ [0, T ],
and let τε ≤ T be an ε-optimal stopping time for wT (x). Then, using the non-
negativity of g and G, we get

wT−u(x) ≤ lnEx
[
e
∫ τε∧(T−u)
0 g(Xs)ds+1{τε<T−u}G(Xτε )

]
≤ lnEx

[
e
∫ τε
0 g(Xs)ds+1{τε<T}G(Xτε )

]
≤ wT (x) + ε. (3.3.12)

Letting ε→ 0, we conclude that T 7→ wT (x) is increasing.
Second, note that if we show the joint continuity of (T, x) 7→ wT (x) and

(T, x) 7→ wT (x), using Proposition A.2.8, we get the optimality of τT and
τT , and the martingale properties of the processes zT and zT . Also, using
Lemma A.2.9, to prove the joint continuity of (T, x) 7→ wT (x), it is enough to
show the continuity of T 7→ wT (x) with a fixed x ∈ E and the continuity of
x 7→ wT (x) with a fixed T ≥ 0; a similar property holds for (T, x) 7→ wT (x).

The rest of the argument consists of two major parts. First, we show the
statement under the additional assumption that G is bounded. Then, using a
suitable approximation, we relax the boundedness condition. More specifically,
for any n ∈ N, let us define bounded versions of (3.3.1) and (3.3.2) by

wnT (x) := inf
τ≤T

lnEx
[
e
∫ τ
0 g(Xs)ds+1{τ<T}G(Xτ )∧n

]
, T ≥ 0, x ∈ E,

wnT (x) := inf
τ≤T

lnEx
[
e
∫ τ
0 g(Xs)ds+G(Xτ )∧n

]
, T ≥ 0, x ∈ E.

In the following we show that the maps T 7→ wnT (x), T 7→ wnT (x), x 7→ wnT (x),
and x 7→ wnT (x) are continuous. Also, we show that

wT (x) = lim
n→∞

wnT (x) and wT (x) = lim
n→∞

wnT (x), T ≥ 0, x ∈ E, (3.3.13)

and use these to show the properties of (T, x) 7→ wT (x) and (T, x) 7→ wT (x).
Note that we already showed that, for a fixed x ∈ E and n ∈ N, the map
T 7→ wnT (x) is increasing and the map T 7→ wnT (x) is decreasing; see the
discussion at the beginning of this proof.

We split the remaining part of the proof into four steps: (1) proof of the
continuity of T 7→ wnT (x) and T 7→ wnT (x) with a fixed n ∈ N and x ∈ E; (2)
proof of the continuity of x 7→ wnT (x) and x 7→ wnT (x) with a fixed n ∈ N and
T ≥ 0; (3) proof of (3.3.13); (4) proof of the joint continuity of (T, x) 7→ wT (x)
and (T, x) 7→ wT (x). At each step, we focus on the properties of wT and its
bounded version wnT . The arguments for wT and wnT are similar, thus we
provide only an outline of the necessary modifications.
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Step 1. We show that, for any n ∈ N and x ∈ E, the maps T 7→ wnT (x) and
T 7→ wnT (x) are continuous. We start with the properties of T 7→ wnT (x). Let
us fix n ∈ N and x ∈ E. First, we show the left-continuity of T 7→ wnT (x). Let
ε > 0. For any u ∈ [0, T ], let τuε ≤ T − u be an ε-optimal stopping time for
ew

n
T−u(x) and let

ZnT (t) := e
∫ t∧T
0 g(Xs)ds+1{t<T}G(Xt)∧n, t ≥ 0.

Since T 7→ wnT (x) is increasing and wnT (x) ≤ lnEx [ZnT (τuε + u)], we get

0 ≤ ewnT (x) − ew
n
T−u(x) ≤ Ex

∣∣ZnT (τuε + u)− ZnT−u(τuε )
∣∣+ ε

≤ sup
τ≤T

Ex
∣∣ZnT (τ + u)− ZnT−u(τ)

∣∣+ ε. (3.3.14)

Now, let us show that, for any T > 0 and x ∈ E, we get

sup
τ≤T

Ex
∣∣ZnT (τ + u)− ZnT−u(τ)

∣∣→ 0, u ↓ 0. (3.3.15)

For any x ∈ E and τ ≤ T , we get

Ex
∣∣ZnT (τ + u)− ZnT−u(τ)

∣∣
= Ex

∣∣∣e∫ (τ+u)∧T
0 g(Xs)ds

(
e1{τ+u<T}G(Xτ+u)∧n − e1{τ<T−u}G(Xτ )∧n

)
+ e1{τ<T−u}G(Xτ )∧n+

∫ τ∧(T−u)
0 g(Xs)ds

(
e
∫ (τ+u)∧T
τ∧(T−u) g(Xs)ds − 1

)∣∣∣∣
≤ eT‖g‖ Ex

∣∣∣eG(Xτ+u)∧n − eG(Xτ )∧n
∣∣∣+ en+T‖g‖

(
eu‖g‖ − 1

)
.

Noting that G(·) ∧ n ∈ C+
b (E) and using Lemma 3.3.1, we get

sup
τ≤T

Ex
∣∣∣eG(Xτ+u)∧n − eG(Xτ )∧n

∣∣∣→ 0, u ↓ 0.

Consequently, since eu‖g‖ − 1 → 0 as u ↓ 0, we get (3.3.15). Thus, recall-
ing (3.3.14) and noting that ε was arbitrary, we get the left-continuity of
T 7→ wnT (x).

Second, we show the right-continuity of T 7→ wT (x). As in the first part
of the proof, let τε ≤ T be an ε-optimal stopping time for wnT (x). Using the
monotonicity of T 7→ wnT (x) and the boundedness of g and G(·) ∧ n, we get

wnT (x) ≤ lim
u↓0

wnT+u(x)

≤ lim
u↓0

lnEx
[
e
∫ τε+u
0 g(Xs)ds+1{τε+u<T+u}G(Xτε+u)∧n

]
= lnEx

[
e
∫ τε
0 g(Xs)ds+1{τε<T}G(Xτε )∧n

]
≤ wnT (x) + ε; (3.3.16)
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note that, in the third line, we used Lebesgue’s dominated convergence the-
orem and the fact that X is right-continuous. Letting ε → 0, we get the
right-continuity of T → wnT (x).

Now, we focus on the continuity of the map T 7→ wnT (x). The proof is
similar to the argument for T 7→ wnT (x), and we provide only an outline. For
the left-continuity, let τε ≤ T be an ε-optimal stopping time for wnT (x). Using
the monotonicity of T 7→ wnT (x) and the boundedness of g and G(·) ∧ n, we
get

wnT (x) ≤ lim
u↓0

wnT−u(x)

≤ lim
u↓0

lnEx
[
e
∫ τε∧(T−u)
0 g(Xs)ds+G(Xτε∧(T−u))∧n

]
= lnEx

[
e
∫ τε
0 g(Xs)ds+G(Xτε )∧n

]
≤ wnT (x) + ε; (3.3.17)

where in the last line we used Lebesgue’s dominated convergence theorem and
the fact that X is quasi left-continuous. Letting ε→ 0, we get that T 7→ wnT (x)
is left-continuous.

For the right-continuity, set Z
n
T (t) := e

∫ t∧T
0 g(Xs)ds+G(Xt∧T )∧n, t ≥ 0. Also,

let u, ε > 0 and τ ε be an ε-optimal stopping time for ew
n
T+u(x). Then, as in

(3.3.14), we get

0 ≤ ewnT (x) − ew
n
T+u(x) ≤ Ex

∣∣ZnT (τ ε)− ZnT+u(τ ε)
∣∣+ ε

≤ sup
τ≤T+u

Ex
∣∣ZnT (τ)− ZnT+u(τ)

∣∣+ ε. (3.3.18)

Also, note that, for any x ∈ E, u ≤ 1, x ∈ E, and τ ≤ T + u, we get

Ex
∣∣ZnT (τ)− ZnT+u(τ)

∣∣ = Ex
∣∣∣e∫ τ∧(T+u)

0 g(Xs)ds
(
eG(Xτ∧T )∧n − eG(Xτ∧(T+u))∧n

)
+ eG(Xτ∧T )∧n+

∫ τ∧T
0 g(Xs)ds

(
1− e

∫ τ∧(T+u)
τ∧T g(Xs)ds

)∣∣∣
≤ e(T+1)‖g‖ Ex

∣∣∣eG(Xτ∧T )∧n − eG(Xτ∧(T+u))∧n
∣∣∣

+ en+T‖g‖
(
eu‖g‖ − 1

)
. (3.3.19)

Thus, noting that eu‖g‖−1→ 0 as u ↓ 0 and using Lemma 3.3.1, as in (3.3.15),
we get

sup
τ≤T+u

Ex
∣∣ZnT (τ)− ZnT+u(τ)

∣∣→ 0, u ↓ 0.

Recalling (3.3.18) and letting ε→ 0, we get the right-continuity of T 7→ wT (x),
which concludes the proof of this step.
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Step 2. We show that, for any n ∈ N and T ≥ 0, the maps x 7→ wnT (x) and
x 7→ wnT (x) are continuous. We start with the properties of x 7→ wnT (x). Let
us fix n ∈ N and T ≥ 0. We use a dyadic approximation of wT . For any
m ∈ N, we set

wn,mT (x) := inf
τ∈T mT

lnEx
[
e
∫ τ
0 g(Xs)ds+1{τ<T}G(Xτ )∧n

]
, x ∈ E, (3.3.20)

where T mT is the family of stopping times taking values in {0, T2m ,
2T
2m , . . . , T}.

We show that, for any m ∈ N, the map x 7→ wn,mT (x) is continuous. Let us fix
m ∈ N and recursively define the sequence of functions

w̃n,0T (x) := 0,

ew̃
n,j
T (x) := Ex

[
e

∫ T
2m
0 g(Xs)ds+w̃

j−1
T (X T

2m
)

]
∧ eG(x)∧n, j = 1, . . . , 2m.

Using Assumption (A3) inductively, we get that, for any j = 1, . . . , 2m, the
map x 7→ w̃n,jT (x) is continuous. Also, using a dyadic version of Proposi-

tion A.1.1, we get wn,mT ≡ w̃n,2
m

T , which implies the continuity of x 7→ wn,mT (x).
We now show that limm→∞w

n,m
T (x) = wnT (x) uniformly in x from a com-

pact set. This, together with the continuity of x 7→ wn,mT (x), shows the conti-
nuity of x 7→ wnT (x). Let ε > 0 and τε ≤ T be an ε-optimal stopping time for
ew

n
T (x). For any m ∈ N, we define its T mT approximation by

τmε := inf{τ ∈ T mT : τ ≥ τε} =
∑2m

j=1 1{ T
2m

(j−1)<τε≤ T
2m

j}
T

2m j.

Noting that τmε ≤ T , for any m ∈ N and x ∈ E, we get

0 ≤ ew
n,m
T (x) − ewnT (x)

≤ Ex
[
e
∫ τmε
0 g(Xs)ds+1{τmε <T}G(Xτmε )∧n

]
− Ex

[
e
∫ τε
0 g(Xs)ds+1{τε<T}G(Xτε )∧n

]
+ ε

= Ex
[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε )∧n − e1{τε<T}G(Xτε )∧n

)]
+ Ex

[
e
∫ τε
0 g(Xs)ds+1{τε<T}G(Xτε )∧n

(
e
∫ τmε
τε

g(Xs)ds − 1

)]
+ ε

≤ Ex
[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε )∧n − e1{τε<T}G(Xτε )∧n

)]
+
(
ew

n
T (x) + ε

)(
e
T
2m
‖g‖ − 1

)
+ ε. (3.3.21)
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For any T ≥ 0 and x ∈ E, we get(
ew

n
T (x) + ε

)(
e
T
2m
‖g‖ − 1

)
≤ (en + ε)

(
e
T
2m
‖g‖ − 1

)
→ 0, m→∞;

(3.3.22)
in particular, this convergence is uniform in x. Also, noting that τmε ≥ τε and
using Lemma 3.3.1, we get

Ex
[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε )∧n − e1{τε<T}G(Xτε )∧n

)]
≤ Ex

[
e
∫ τmε
0 g(Xs)ds

(
e1{τε<T}G(Xτmε )∧n − e1{τε<T}G(Xτε )∧n

)]
≤ eT‖g‖ Ex

∣∣∣eG(Xτmε )∧n − eG(Xτε )∧n
∣∣∣→ 0, m→∞; (3.3.23)

also, the convergence is uniform in x from compact sets. Consequently, re-
calling that ε > 0 was arbitrary, we conclude the proof of the continuity of
x 7→ wnT (x).

The argument for x 7→ wnT (x), is similar to the one used for x 7→ wT (x),
thus we provide only an outline. By analogy to (3.3.20), we define

wn,mT (x) := inf
τ∈T mT

Ex
[
e
∫ τ
0 g(Xs)ds+G(Xτ )∧n

]
, n,m ∈ N.

Using the argument applied to wn,mT , we show that the map x 7→ wn,mT (x) is
continuous. Also, as in (3.3.21)–(3.3.23), we show that

0 ≤ ew
n,m
T (x) − ewnT (x)

≤ eT‖g‖ Ex
∣∣∣eG(Xτmε )∧n − eG(Xτε )∧n

∣∣∣+ (e
T
2m
‖g‖ − 1)(en + ε) + ε,

where τε is an ε-optimal stopping time for ew
n
T (x) and τmε is the T mT -dyadic

approximation of τmε . Thus, using Lemma 3.3.1, we get that wn,mT (x) converges
to wnT (x) as m → ∞ uniformly in x from compact sets. This shows the
continuity of x 7→ wnT (x) and concludes the proof of this step.

Step 3. We show that wT (x) = limn→∞w
n
T (x) and wT (x) = limn→∞w

n
T (x),

T ≥ 0, x ∈ E. For brevity, we focus on wT and wnT ; the argument for wT and
wnT follows the same lines. The main difficulty in this step stems from the fact
that the sequence (wnT (x))n∈N is increasing. Thus, we need to interchange the
supremum with respect to n with the infimum with respect to τ .

Let us fix T ≥ 0 and x ∈ E. Also, let us define the family of events
An := {supt∈[0,T ]G(Xt) ≤ n}, n ∈ N. For any n ∈ N, we get An ⊂ An+1.
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Moreover, using the càdlàg property of X, the continuity of G, and the fact
that T <∞, we get Px [∪∞n=1An] = 1, x ∈ E.

Combining Steps 1 and 2 with Lemma A.2.9, we get that, for any n ∈ N,
the map (T, x) 7→ wnT (x) is jointly continuous. Thus, for any n ∈ N, using
Proposition A.2.8, we get that the stopping time

τnT := inf{t ≥ 0 : wnT−t(Xt) = G(Xt) ∧ n} ∧ T (3.3.24)

is optimal for wnT (x). Also, note that, using the right-continuity of X, on the
event {τnT < T}, we get wnT−τnT

(XτnT
) = G(XτnT

) ∧ n. Consequently, on the

event An ∩ {τnT < T}, we get

wn+1
T−τnT

(XτnT
) ≥ wnT−τnT (XτnT

) = G(XτnT
) ∧ n = G(XτnT

) ≥ G(XτnT
) ∧ (n+ 1).

Hence, noting that wn+1
S (·) ≤ G(·) ∧ (n + 1), S ≥ 0, we get τn+1

T ≤ τnT on
An ∩ {τnT < T}. In fact, we get τn+1

T ≤ τnT on An; this follows from the fact
that on An ∩{τnT = T}, directly from (3.3.24), we get τn+1

T ≤ T = τnT . Acting

inductively, for any k ∈ N, we get τn+k+1
T ≤ τn+k

T on An. Thus, recalling
that Px [∪∞n=1An] = 1, x ∈ E, we get that the limit τ̂T := limn→∞ τ

n
T is well

defined. Also, using the right-continuity of X, we get

lim
n→∞

1{τnT<T}G(XτnT
) ∧ n = 1{τ̂T<T}G(Xτ̂T

).

Thus, using Fatou’s lemma, we get

ewT (x) ≤ Ex
[
e
∫ τ̂T
0 g(Xs)ds+1{τ̂T <T}G(Xτ̂T )

]
= Ex

[
lim
n→∞

e
∫ τnT
0 g(Xs)ds+1{τn

T
<T}G(Xτn

T
)∧n
]

≤ lim
n→∞

Ex
[
e
∫ τnT
0 g(Xs)ds+1{τn

T
<T}G(Xτn

T
)∧n
]

= lim
n→∞

ew
n
T (x) ≤ ewT (x), (3.3.25)

which concludes the proof of wT (x) = limn→∞w
n
T (x), T ≥ 0, x ∈ E. The

argument for wT (x) = limn→∞w
n
T (x), T ≥ 0, x ∈ E, follows the same logic

and is omitted for brevity.

Step 4. We show the joint continuity of (T, x) 7→ wT (x) and (T, x) 7→ wT (x).
We start with the properties of (T, x) 7→ wT (x). Recalling Lemma A.2.9, it is
enough to show that the maps T 7→ wT (x) and x 7→ wT (x) are continuous.
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First, we fix x ∈ E and show the continuity of T 7→ wT (x). Recalling
that by Steps 1 and 3, the function T 7→ wT (x) is the increasing limit of
the continuous functions T 7→ wnT (x), we get that T 7→ wT (x) is lower semi-
continuous. This, together with the fact that T 7→ wT (x) is increasing, shows
the left-continuity of T 7→ wT (x). Also, using the argument leading to (3.3.16),
we get that T 7→ wT (x) is right-continuous; note that here, instead of the
boundedness of G(·) ∧ n, we use Assumption (A2).

Second, we fix T ≥ 0 and show the continuity of x 7→ wT (x). Again,
recalling Steps 2 and 3, and the fact that the function x 7→ wT (x) is the in-
creasing limit of the continuous functions x 7→ wnT (x), we get that the function
x 7→ wT (x) is lower semi-continuous. To show the upper semi-continuity we
use a dyadic approximation of wT . For any m ∈ N, we set

ŵmT (x) := inf
τ∈T mT

lnEx
[
e
∫ τ
0 g(Xs)ds+1{τ<T}G(Xτ )

]
, x ∈ E, (3.3.26)

where T mT is the family of stopping times taking values in {0, T2m ,
2T
2m , . . . , T}.

Using Assumption (A3), as in Step 2, we show that x 7→ ŵmT (x) is contin-
uous. We now show that limm→∞ ŵ

m
T (x) = wT (x) for any x ∈ E. This,

together with the continuity of x 7→ ŵmT (x) and the fact that (ŵmT (x))m∈N is
decreasing, shows the upper semi-continuity of x 7→ wT (x). Let ε > 0 and
τε ≤ T be an ε-optimal stopping time for ewT (x). For any m ∈ N, we set
τmε := inf{τ ∈ T mT : τ ≥ τε} =

∑2m

j=1 1{ T
2m

(j−1)<τε≤ T
2m

j}
T

2m j. As in (3.3.21),

for any x ∈ E, we get

0 ≤ eŵ
m
T (x) − ewT (x)

≤ Ex
[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
+
(
ewT (x) + ε

)(
e
T
2m
‖g‖ − 1

)
+ ε. (3.3.27)

For any x ∈ E, we get
(
ewT (x) + ε

) (
e
T
2m
‖g‖ − 1

)
→ 0 as m→∞. Also, noting

that τmε ↓ τε and using (A2), for any x ∈ E, we get

Ex
[
e
∫ τmε
0 g(Xs)ds

(
e1{τmε <T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
≤ Ex

[
e
∫ τmε
0 g(Xs)ds

(
e1{τε<T}G(Xτmε ) − e1{τε<T}G(Xτε )

)]
≤ eT‖g‖ Ex

∣∣∣eG(Xτmε ) − eG(Xτε )
∣∣∣→ 0, m→∞; (3.3.28)
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note that here, in contrast to (3.3.23), the convergence is only pointwise. Con-
sequently, letting ε→ 0 in (3.3.27), we get that x 7→ wT (x) is continuous.

Let us now show the continuity of the map (T, x) 7→ wT (x). Again, re-
calling Lemma A.2.9, it is enough to show that the maps T 7→ wT (x) and
x 7→ wT (x) are continuous. Combining Steps 1 and 3, we get that T 7→ wT (x),
as the increasing limit of the continuous functions T 7→ wnT (x), is lower semi-
continuous. This, combined with the fact that T 7→ wT (x) is decreasing, shows
the right-continuity of T 7→ wT (x). Using Assumption (A2) and the argument
leading to (3.3.17) we also get the left-continuity of T 7→ wT (x).

As in the case of wT , the lower semi-continuity of x 7→ wT (x) follows from
the continuity of x 7→ wnT (x) and the fact that wnT (x) ↑ wT (x) as n→∞. For
the upper semi-continuity, we consider a dyadic approximation of wT given by

ŵ
m
T (x) := inf

τ∈T mT
lnEx

[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
, T ≥ 0, m ∈ N, x ∈ E. (3.3.29)

As in (3.3.27)–(3.3.28), we show that, for any ε > 0, we get

0 ≤ eŵ
m
T (x) − ewT (x)

≤
(
ewT (x) + ε

)(
e
T
2m
‖g‖ − 1

)
+ eT‖g‖ Ex

∣∣∣eG(Xτmε ) − eG(Xτε )
∣∣∣+ ε,

where τε is an ε-optimal stopping time for ewT (x) and τmε is its T mT approxima-

tion. Thus, letting m→∞, we get a pointwise convergence of ŵ
m
T (x) to wT (x),

which concludes the proof of the upper semi-continuity of x 7→ wT (x).

Remark 3.3.3. It should be noted that the results for the map wT remain valid
even if we replace g ∈ C+

b (E) by a generic f ∈ Cb(E). Indeed, for this map,
the non-negativity of g was used only to show the convergence of the type of

Ex|e
∫ τ+h
τ g(Xs)ds − 1| ≤ eh‖g‖ − 1→ 0, h ↓ 0;

see e.g. (3.3.19). For a generic f ∈ Cb(E) we may use the inequality

|ey − ez| ≤ emax(y,z)|y − z|, y, z ∈ R,

to get

Ex|e
∫ τ+h
τ f(Xs)ds − 1| ≤ eh‖f‖h‖f‖ → 0, h ↓ 0.

However, similar argument cannot be applied for wT . Indeed, without the
non-negativity condition for g it is difficult to obtain the monotonicity of the
map T 7→ wT (x); see (3.3.12) for details. ♦
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3.3.2 Time-inhomogeneous case

Now, we present some results related to the optimal stopping problems with
time-dependent cost functions. Using a suitable state space extension tech-
nique, we show how to embed this type of problems into the setting considered
in Theorem 3.3.2. More precisely, let g̃, G̃ ∈ C+

b ([0,∞)×E). For any T, t ≥ 0
and x ∈ E, we define

wT (t, x) := inf
τ≤T

lnEx
[
exp

(∫ τ

0
g̃(t+ s,Xs)ds+ 1{τ<T}G̃(t+ τ,Xτ )

)]
,

(3.3.30)

wT (t, x) := inf
τ≤T

lnEx
[
exp

(∫ τ

0
g̃(t+ s,Xs)ds+ G̃(t+ τ,Xτ )

)]
. (3.3.31)

Note that here, for brevity, we assumed that G̃ is bounded. Under suitable
integrability and continuity conditions, we could extend our results to the
unbounded case; see the argument in Theorem 3.3.2.

The maps (T, t, x) 7→ wT (t, x) and (T, t, x) 7→ wT (t, x) could be seen as
time-dependent versions of (3.3.1) and (3.3.2). In particular, using this for-
mulation we may consider discounted risk-sensitive optimal stopping prob-
lems, where, for some discount factor r > 0, we set g̃(t, x) = e−rtg(x) and
G̃(t, x) = e−rtG(x), t ≥ 0, x ∈ E. Also, the properties of (3.3.30) are used to
solve finite time horizon impulse control problems; see Section 4.2 for details.

The properties of the maps (T, t, x) 7→ wT (t, x) and (T, t, x) 7→ wT (t, x)
are summarised in Theorem 3.3.4. This could be seen as a version of Theo-
rem 3.3.2.

Theorem 3.3.4. For any T ≥ 0, let the maps wT and wT be given by (3.3.30)
and (3.3.31), respectively. Then:

(1) The map (T, t, x) 7→ wT (t, x) is jointly continuous and bounded. Also,
for any T, t ≥ 0 and x ∈ E, the stopping time

τT (t) := inf
{
s ≥ 0 : wT−s(t+ s,Xs) = G̃(t+ s,Xs)

}
∧ T

is optimal for wT (t, x). Moreover, for any T, t ≥ 0 and x ∈ E, the
process

zT,t(s) := e
∫ s∧T
0 g̃(t+h,Xh)dh+wT−s∧T (t+s∧T,Xs∧T ), s ≥ 0,

is a Px-submartingale and (zT,t(τT (t) ∧ s)), s ≥ 0, is a Px-martingale.
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(2) The map (T, t, x) 7→ wT (t, x) is jointly continuous and bounded. Also,
for any T, t ≥ 0 and x ∈ E, the stopping time

τT (t) := inf
{
s ≥ 0 : wT−s(t+ s,Xs) = G̃(t+ s,Xs)

}
is optimal for wT (t, x). Moreover, for any T, t ≥ 0 and x ∈ E, the
process

zT,t(s) := e
∫ s∧T
0 g̃(t+h,Xh)dh+wT−s∧T (t+s∧T,Xs∧T ), s ≥ 0,

is a Px-submartingale and (zT,t(τT (t) ∧ s)), s ≥ 0, is a Px-martingale.

Proof. We apply a space enlargement technique to use the results from Theo-
rem 3.3.2. Let (Ω̃, F̃ , F̃) be a filtered measurable space, where Ω̃ := [0,∞)×Ω,
the σ-field is given by F̃ := B[0,∞)⊗F , and the filtration F̃ := (F̃t)t∈[0,∞) is

defined as F̃t := B[0,∞)⊗Ft, t ≥ 0. Also, let Ẽ := [0,∞)×E, Ẽ := B[0,∞)⊗E ,
and ρ̃((t, x), (t′, x′)) := |t − t′| + ρ(x, x′), (t, x), (t′, x′) ∈ Ẽ. Next, for any
s ∈ [0,∞) and x ∈ E, let us define P̃(s,x) := δs ⊗ Px, where δs denotes the

Dirac measure at s. Let us define the space-time process X̃ = (X̃t)t∈[0,∞) by

X̃t(s, ω) := (t+ s,Xt(ω)), t ≥ 0, (s, ω) ∈ [0,∞)× Ω = Ω̃. (3.3.32)

Using the classic argument one can show that ((X̃t)t≥0, (P̃(s,x))(s,x)∈Ẽ) is a

standard Markov process on (Ω̃, F̃ , F̃) with values in (Ẽ, Ẽ); see e.g. Section
1.4.6 in Shiryaev (1978) or Exercise 1.10 in Chapter III of Revuz and Yor
(1999) for details. For transparency, we show that this process is Cb-Feller and
the version of Assumption (A4) is satisfied for X̃. More specifically, we define

P̃th(y) := Ẽy[h(Xt)], y ∈ Ẽ, h ∈Mb(Ẽ),

M̃
Γ̃
(t, r) := sup

y∈Γ̃

P̃y[ sup
s∈[0,t]

ρ(X̃s, y) ≥ r], Γ̃ ⊂ Ẽ, t, r > 0.

and show that P̃tCb(Ẽ) ⊂ Cb(Ẽ), t > 0, and for any t0 > 0, r0 > 0, and a

compact set Γ̃ ⊂ Ẽ, we get limt→0 M̃Γ̃
(t, r0) = 0 and limr→∞ M̃Γ̃

(t0, r) = 0.

To show the Cb-Feller property of P̃t, let us fix t > 0 and h ∈ Cb(Ẽ). Also,
let (sn) and (xn) be sequences such that sn → s ∈ [0,∞) and xn → x ∈ E as
n→∞. Using the Cb-Feller property of Pt, we get

|P̃th(s, xn)− P̃th(s, x)| = |Exn [h(t+ s,Xt)]− Ex [h(t+ s,Xt)] | → 0, n→∞.
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Thus, using the inequality

|P̃th(sn, xn)− P̃th(s, x)| ≤ |P̃th(sn, xn)− P̃th(s, xn)|

+ |P̃th(s, xn)− P̃th(s, x)|, (3.3.33)

it is enough to show supz∈Γ |P̃th(sn, z) − P̃th(s, z)| → 0 as n → ∞, where
Γ ⊂ E is some compact set such that (xn) ⊂ Γ and x ∈ Γ. Let ε > 0 and let
t0 > 0 be such that sn + t ≤ t0, n ∈ N. Using Assumption (A4), we may find
r > 0 such that

sup
z∈Γ

Px

[
sup

u∈[0,t0]
ρ(Xs, x) ≥ r

]
≤ ε.

Thus, setting A := {ρ(Xt, X0) < r}, we get

sup
z∈Γ
|P̃th(sn, z)− P̃th(s, z)| ≤ sup

z∈Γ
Ez |h(t+ sn, Xt)− h(t+ s,Xt)|

≤ sup
z∈Γ

Ez [1A |h(t+ sn, Xt)− h(t+ s,Xt)|]

+ sup
z∈Γ

Ez [1Ac |h(t+ sn, Xt)− h(t+ s,Xt)|]

≤ sup
z∈B(Γ,r)

|h(t+ sn, z)− h(t+ s, z)|+ 2ε‖h‖,

where B(Γ, r) := {z ∈ E : ρ(Γ, z) ≤ r}. Noting that, from the continuity of h,
we get

sup
z∈B(Γ,r)

|h(t+ sn, z)− h(t+ s, z)| → 0, n→∞,

and recalling (3.3.33), we get P̃tCb(Ẽ) ⊂ Cb(Ẽ).

To show the properties of M̃
Γ̃
(t, r), it is enough to consider Γ̃ := [0, T0]×Γ

for some T0 > 0 and a compact set Γ ⊂ E. Then, for any t, r > 0, we get

M̃
Γ̃
(t, r) = sup

t′∈[0,T0]
x∈Γ

Px

[
sup
s∈[0,t]

ρ̃((t′ + s,Xs), (t
′, x)) ≥ r

]

= sup
x∈Γ

Px

[
sup
s∈[0,t]

(|s|+ ρ(Xs, x)) ≥ r

]

≤ sup
x∈Γ

Px

[
sup
s∈[0,t]

ρ(Xs, x) ≥ r − t

]
.
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In particular, for r0 > 0 and any t < 1
2r0, we get

M̃
Γ̃
(t, r0) ≤ sup

x∈Γ
Px

[
sup
s∈[0,t]

ρ(Xs, x) ≥ 1

2
r0

]
.

Thus, using Assumption (A4), we get limt→0 M̃Γ̃
(t, r0) = 0. Similarly, for

t0 > 0 and any r = t0 + r′ > t0, we get

M̃
Γ̃
(t0, r) ≤ sup

x∈Γ
Px

[
sup

s∈[0,t0]
ρ(Xs, x) ≥ r′

]
.

Thus, letting r′ → ∞, from Assumption (A4), we get limr→∞ M̃Γ̃
(t0, r) = 0.

Hence, the version of Assumption (A4) is satisfied for the space-time process
X̃. Also, Assumptions (A1)–(A3) are satisfied due to the boundedness of
G̃; see also the discussion at the beginning of this section. Consequently,
Theorem 3.3.2 can be applied to (3.3.30) and (3.3.31).

In the setting of the space-time process, for any T, t ≥ 0 and x ∈ E,
directly from the definition of X̃, we get

wT (t, x) = inf
τ≤T

ln Ẽ(t,x)

[
exp

(∫ τ

0
g̃(X̃s)ds+ 1{τ<T}G̃(X̃τ )

)]
,

wT (t, x) = inf
τ≤T

ln Ẽ(t,x)

[
exp

(∫ τ

0
g̃(X̃s)ds+ G̃(X̃τ )

)]
.

Thus, using Theorem 3.3.2, we get that the maps (T, t, x) 7→ wT (t, x) and
(T, t, x) 7→ wT (t, x) are jointly continuous. Also, for any t ≥ 0 and x ∈ E, the
stopping times

τ̃T := inf
{
s ≥ 0 : wT−s(X̃s) = G̃(X̃s)

}
∧ T,

τ̃T := inf
{
s ≥ 0 : wT−s(X̃s) = G̃(X̃s)

}
are optimal for wT (t, x) and wT (t, x), respectively. Noting that under P̃(t,x),

t ≥ 0, x ∈ E, we get τ̃T = τT (t) and τ̃T = τT (t), we conclude the proof of the
optimality of τT (t) and τT (t). Using a similar argument and the martingale
characterisation from Theorem 3.3.2, we also get the martingale properties of
zT,t and zT,t, which concludes the proof.
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3.4 Infinite time horizon continuous time stopping

In this section, we consider the value functions of the infinite time horizon
continuous time optimal stopping problems given by

w(x) := inf
τ∈Tx

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E, (3.4.1)

w(x) := inf
τ∈Tx,b

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E. (3.4.2)

Assuming (A1)–(A4), we show certain regularity properties of the maps w
and w. This includes semi-continuity and finite time horizon approximation
schemes. Also, we provide formulae for optimal stopping times and link the
value functions to a suitable form of the Bellman equation.

3.4.1 Continuous time Bellman equation

The analysis in this section is based on properties of maps w ∈ C+(E) which
are solutions to the continuous time Bellman equation given by

ew(x) = inf
τ∈T

Ex
[
e
∫ τ∧t
0 g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)

]
, x ∈ E, t ≥ 0.

(3.4.3)
We show that the maps given by (3.4.1) and (3.4.2) are minimal and maximal
solutions to this equation, respectively. Also, we show that, in the bounded
case, Equation (3.4.3) admits a unique solution which facilitates the proof of
the continuity properties of the maps w and w.

Before we proceed, let us clarify a terminological issue. Following the
discussion in Section 3.2.1, Equation (3.4.3) should be called the continuous
time dynamic programming principle. In fact, in the continuous time setting,
the Bellman equation is typically associated with a specific functional equation
related to the infinitesimal generator of the process. Nevertheless, to simplify
the narrative, we refer to (3.4.3) as the continuous time Bellman equation.

In Proposition 3.4.1 we study the properties of continuous solutions to the
Bellman equation (3.4.3). The first part of the proposition may be seen as a
continuous time version of Lemma 3.2.1. Note that here, in contrast to the
discrete time case, we additionally require the continuity of w. The second part
of the proposition gives a characterisation of the situation when a continuous
solution to the Bellman equation could be expressed as an expectation of the
stopped value process.
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Proposition 3.4.1. Let w ∈ C+(E) be a solution to (3.4.3). Also, let us
define

τw := inf{t ≥ 0 : w(Xt) = G(Xt)}. (3.4.4)

Then:

(1) The infimum in (3.4.3) is attained for the stopping time τw, i.e. for any
x ∈ E and T ≥ 0, we get

ew(x) = Ex
[
e
∫ τw∧T
0 g(Xs)ds+1{τw<T}G(Xτw )+1{τw≥T}w(XT )

]
. (3.4.5)

Moreover, for any x ∈ E, the process

zw(t) := exp

(∫ t

0
g(Xs)ds+ w(Xt)

)
, t ≥ 0, (3.4.6)

is a Px-submartingale and (zw(τw ∧ t)), t ≥ 0, is a Px-martingale.

(2) We have

ew(x) = Ex
[
e
∫ τw
0 g(Xs)ds+G(Xτw )

]
, x ∈ E

if and only if

lim
T→∞

Ex
[
1{τw≥T}e

∫ T
0 g(Xs)ds+w(XT )

]
= 0, x ∈ E.

Proof. For transparency, we prove the claims point by point.

Proof of (1). For any T ≥ 0 and x ∈ E, let us define

ewT (x) := inf
τ≤T

Ex
[
e
∫ τ
0 g(Xs)ds+1{τ<T}G(Xτ )+1{τ=T}w(XT )

]
and note that, by (3.4.3), in fact we have wT ≡ w for any T ≥ 0. In particular,
using the continuity of x 7→ w(x), we get that the map (T, x) 7→ wT (x) is
jointly continuous. Hence, using Proposition A.2.8, we get that the stopping
time

τT := inf{t ≥ 0 : wT−t(Xt) = G(Xt)} ∧ T = τw ∧ T (3.4.7)

is optimal for wT . Thus, for any x ∈ E and T ≥ 0, we get

ew(x) = ewT (x) = Ex
[
e
∫ τT
0 g(Xs)ds+1{τT <T}G(XτT )+1{τT=T}w(XT )

]
= Ex

[
e
∫ τw∧T
0 g(Xs)ds+1{τw<T}G(Xτw )+1{τw≥T}w(XT )

]
,
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and (3.4.5) holds. Also, using again Proposition A.2.8, we get that (zw(t)),
t ≥ 0, is a submartingale, and (zw(τT ∧ t)), t ≥ 0, is a martingale.

Proof of (2). Using the first part, for any x ∈ E and T ≥ 0, we get

ew(x) = Ex
[
e
∫ τw∧T
0 g(Xs)ds+1{τw<T}G(Xτw )+1{τw≥T}w(XT )

]
= Ex

[
1{τw<T}e

∫ τw∧T
0 g(Xs)ds+G(Xτw ) + 1{τw≥T}e

∫ τw∧T
0 g(Xs)ds+w(XT )

]
.

(3.4.8)

Thus, recalling that g(·) ≥ c > 0 and using Fatou’s lemma, for any x ∈ E, we
get

Ex [eτwc] ≤ Ex
[
lim inf
T→∞

e(τw∧T )c

]
≤ Ex

[
lim inf
T→∞

e
∫ τw∧T
0 g(Xs)ds

]
≤ ew(x) <∞,

and, in particular, we get Px[τw < ∞] = 1, x ∈ E. Thus, letting T → ∞
in (3.4.8), we get

ew(x) = lim
T→∞

Ex
[
1{τw<T}e

∫ τw
0 g(Xs)ds+G(Xτw ) + 1{τw≥T}e

∫ T
0 g(Xs)ds+w(XT )

]
= Ex

[
e
∫ τw
0 g(Xs)ds+G(Xτw )

]
+ lim
T→∞

Ex
[
1{τw≥T}e

∫ T
0 g(Xs)ds+w(XT )

]
,

where the second equality follows from the monotone convergence theorem.
This concludes the proof.

3.4.2 Solution to the problem

In this section, by analogy to Section 3.2, we show that the maps w and w
are minimal and maximal solutions to (3.4.3), respectively. Also, we discuss
the conditions that guarantee the uniqueness of a solution to the Bellman
equation. This facilitates the analysis of the regularity properties of w and w.

We start with noting that (3.4.3) may be expressed in the operator form
as

w(x) = Stw(x), w ∈M+(E), t ≥ 0, x ∈ E, (3.4.9)

where the operator St : M+(E)→M+(E), t ≥ 0, is given by

Sth(x) := inf
τ∈T

lnEx
[
e
∫ τ∧t
0 g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}h(Xt)

]
(3.4.10)

with h ∈ M+(E) and x ∈ E. By analogy to (3.2.10) and (3.2.11), in order
to approximate solutions to (3.4.3), we iterate St on the suitable lower and
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upper bounds. More specifically, for any t ≥ 0, we recursively define

vt0(x) := 0, vtn+1(x) := Stv
t
n(x), n ∈ N, x ∈ E, (3.4.11)

vt0(x) := G(x), vtn+1(x) := Stv
t
n(x), n ∈ N, x ∈ E. (3.4.12)

We start with linking the iterates of the operator St to the finite time horizon
optimal stopping value functions.

Proposition 3.4.2. For any t ≥ 0 and n ∈ N, let the maps vtn and vtn be
given by (3.4.11) and (3.4.12), respectively. Also, for any T ≥ 0, let the maps
wT and wT be given by (3.3.1) and (3.3.2), respectively. Then, we get

vtn(x) ≡ wnt(x) and vtn(x) ≡ wnt(x), n ∈ N, t ≥ 0, x ∈ E.

Proof. We present the proof only for vtn; the argument for vtn is similar and is
omitted for brevity. Also, for notational convenience, we set t = 1; the general
case follows the same logic.

We proceed by induction. The claim for n = 0 follows directly from the
definition. Let us assume that, for some n ∈ N, we get v1

n ≡ wn. Define the
process

zn+1(t) := e
∫ t∧(n+1)
0 g(Xs)ds+wn+1−t∧(n+1)(Xt∧(n+1)), t ≥ 0.

Using Theorem 3.3.2 and Doob’s optional stopping theorem, for any stopping
time τ ∈ T , we get that the process (zn+1(τ ∧ t)), t ≥ 0, is a submartingale.
In particular, for any x ∈ E, we get Ex[zn+1(0)] ≤ infτ∈T Ex

[
zn+1(τ ∧ 1)

]
.

Then, recalling that wT (x) ≤ G(x), T ≥ 0, x ∈ E, we get

ewn+1(x) = Ex[zn+1(0)]

≤ inf
τ∈T

E
[
e
∫ τ∧1
0 g(Xs)ds+wn+1−τ∧1(Xτ∧1)

]
≤ inf

τ∈T
E
[
e
∫ τ∧1
0 g(Xs)ds+1{τ<1}G(Xτ )+1{τ≥1}wn(X1)

]
. (3.4.13)

Recall that, by Theorem 3.3.2, the process (zn+1(τn+1 ∧ t)), t ≥ 0, is a mar-
tingale, where τn+1 := inf{t ≥ 0 : wn+1−t(Xt) = G(Xt)}∧ (n+ 1). Also, using
the continuity of (T, x) 7→ wT (x) and the right-continuity of X, on the event
{τn+1 < n+ 1}, we get wn+1−τn+1

(Xτn+1
) = G(Xτn+1

). Thus, for any x ∈ E,
we get

ewn+1(x) = E
[
e
∫ τn+1∧1
0 g(Xs)ds+wn+1−τn+1∧1

(Xτn+1∧1)
]
.

= E
[
e
∫ τn+1∧1
0 g(Xs)ds+1{τn+1<1}G(Xτn+1 )+1{τn+1≥1}wn(X1)

]
.
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Combining this with (3.4.13) and using the induction assumption, for any
x ∈ E, we get

ewn+1(x) = inf
τ∈T

E
[
e
∫ τ∧1
0 g(Xs)ds+1{τ<1}G(Xτ )+1{τ≥1}wn(X1)

]
= eS1wn(x) = eS1v1n(x) = ev

1
n+1(x),

which concludes the proof.

In the following theorem, we characterise the solutions to the Bellman
equation. In particular, we get that w and w are minimal and maximal solu-
tions to (3.4.3), respectively. This may be seen as a continuous time version
of Theorem 3.2.6.

Theorem 3.4.3. Let the maps w and w be given by (3.4.1) and (3.4.2), re-
spectively. Also, for any T ≥ 0, let the maps wT and wT are given by (3.3.1)
and (3.3.2), respectively. Then:

(1) For any x ∈ E, we get

w(x) = lim
T→∞

wT (x) and w(x) = lim
T→∞

wT (x).

Also, w is lower semi-continuous and w is upper semi-continuous.

(2) The maps w and w are solutions to (3.4.3).

(3) For any solution w ∈ M+(E) to the Bellman equation (3.4.3), we get
w(·) ≤ w(·) ≤ w(·).

Proof. For transparency, we prove the claim point by point.

Proof of (1). The proof that w(x) = limT→∞wT (x), x ∈ E, follows the lines
of the argument in Step 2 in the proof of Theorem 3.2.6 and is omitted for
brevity. Now we show that w(x) = limT→∞wT (x), x ∈ E.

Recalling the non-negativity of g and G, for any T ≥ and x ∈ E, we get

ewT (x) = inf
τ∈Tx

Ex
[
e
∫ τ∧T
0 g(Xs)ds+1{τ<T}G(Xτ )

]
≤ inf

τ∈Tx
Ex
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
= ew(x).

Thus, we get limT→∞wT (x) ≤ w(x), x ∈ E. Let us now show the reverse
inequality. For any T ≥ 0, define

τ̂T := inf
{
t ≥ 0 : wT−t(Xt) = G(Xt)

}
(3.4.14)
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and note that τT = τ̂T ∧ T , where τT is an optimal stopping time for wT
given by (3.3.9). Recalling Theorem 3.3.2, for any x ∈ E, we get that the
sequence (wn(x))n∈N is increasing and bounded from above by G(x). Thus,
we get τ̂n+1 ≤ τ̂n, n ∈ N. We show that, for any x ∈ E and Px almost all
ω ∈ Ω, starting from some n ∈ N (depending on ω), the sequence (τn(ω)),
n ∈ N, is decreasing. Note that, from the monotonicity of (τ̂n), for any n ∈ N,
on the event {τn < n}, we get

τ̂n+1 ≤ τ̂n = τn < n, (3.4.15)

thus τ̂n+1 = τn+1, and consequently τn+1 ≤ τn on {τn < n}. Moreover,
recalling that g(·) ≥ c > 0 and G(·) ≥ 0, for any n ∈ N and x ∈ E, we get

eG(x) ≥ ewn(x) = Ex
[
e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

]
≥ Ex

[
1{τn=n}

]
ecn. (3.4.16)

Consequently, for any x ∈ E, we get
∑∞

n=1 Px [τn = n] ≤
∑∞

n=0
eG(x)

ecn < ∞.
Thus, using the Borel-Cantelli lemma, we get Px [

⋃∞
n=0{τn < n}] = 1, x ∈ E.

Hence, recalling (3.4.15) and the following discussion, we get that, for any
ω ∈

⋃∞
n=0{τn < n}, starting from some n ∈ N (depending on ω), we get

τn+k+1(ω) ≤ τn+k(ω), k ∈ N. Consequently, the stopping time

τ̂ := lim
n→∞

τn (3.4.17)

is well defined and τ̂ ∈ Tx for any x ∈ E. Also, using the right-continuity of X,
we get limn→∞ 1{τn<n}G(Xτn) = G(Xτ̂ ) Px a.s. Thus, using Fatou’s lemma,
for any x ∈ E, we get

ew(x) ≤ Ex
[
e
∫ τ̂
0 g(Xs)ds+G(Xτ̂ )

]
= Ex

[
lim
n→∞

(
e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

)]
≤ lim

n→∞
ewn(x) (3.4.18)

and, consequently, we get limn→∞wn(x) = w(x), x ∈ E. In fact, using the
monotonicity of T 7→ wT (x), x ∈ E, we also get limT→∞wT (x) = w(x), x ∈ E.

Finally, using Theorem 3.3.2, we get that the map x 7→ w(x) is the in-
creasing limit of the continuous functions x 7→ wn(x). Thus, we get that w
is lower semi-continuous. Similarly, noting that the map x 7→ w(x) is the de-
creasing limit of the continuous functions x 7→ wn(x), we get that w is upper
semi-continuous.

Proof of (2). First, we prove that w satisfies (3.4.3). Let us define the process

z(t) := e
∫ t
0 g(Xs)ds+w(Xt), t ≥ 0. (3.4.19)
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We show that (z(t)), t ≥ 0, is a submartingale. From Theorem 3.3.2, using the
submartingale property of the process (zT (t)) from (3.3.10), for any T, t, h ≥ 0
and x ∈ E, we get

e
∫ t∧T
0 g(Xs)ds+wT−t∧T (Xt∧T ) ≤ Ex

[
e
∫ (t+h)∧T
0 g(Xs)ds+wT−(t+h)∧T (X(t+h)∧T )

∣∣∣Ft] .
Thus, recalling the monotonicity of T 7→ wT (x), x ∈ E, and letting T → ∞,
for any t, h ≥ 0 and x ∈ E, we get

z(t) = e
∫ t
0 g(Xs)ds+w(Xt) ≤ Ex

[
e
∫ t+h
0 g(Xs)ds+w(Xt+h)

∣∣∣Ft] = Ex [z(t+ h)|Ft] ,
(3.4.20)

which shows the submartingale property of (z(t)), t ≥ 0.
Next, using Doob’s optional stopping theorem and the fact that w ≤ G,

for any t ≥ 0 and x ∈ E, we get

ew(x) = Ex [z(0)] ≤ inf
τ∈T

Ex [z(τ ∧ t)]

≤ inf
τ∈T

Ex
[
e
∫ τ∧t
0 g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)

]
. (3.4.21)

To conclude the proof that w satisfies (3.4.3), we show that, for any t ≥ 0 and
x ∈ E, we get

ew(x) = Ex
[
e
∫ τ̂∧t
0 g(Xs)ds+1{τ̂<t}G(Xτ̂ )+1{τ̂≥t}w(Xt)

]
, (3.4.22)

where the stopping time τ̂ is given by (3.4.17). From Theorem 3.3.2, using the
martingale property of (zT (t ∧ τT )), for any t ≥ 0, T ≥ t, and x ∈ E, we get

ewT (x) = Ex[zT (0)] = Ex
[
e
∫ τT∧t
0 g(Xs)ds+wT−τT∧t

(XτT∧t)
]

= Ex
[
e
∫ τT∧t
0 g(Xs)ds+1{τT <t}G(XτT )+1{τT≥t}wT−t(Xt)

]
.

Thus, using the right-continuity of X, recalling Assumption (A2), and letting
T → ∞, we get (3.4.22). Combining this with (3.4.21), for any t ≥ 0 and
x ∈ E, we get

ew(x) = inf
τ∈T

Ex
[
e
∫ τ∧t
0 g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)

]
.

Thus, we get that w satisfies (3.4.3).
Second, we prove that w is also a solution to (3.4.3). Combining Theo-

rem 3.3.2, the first part of this theorem, and Proposition 3.4.2, for any t ≥ 0,
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we get w(x) = limT→∞wT (x) = infn∈N v
t
n+1(x), x ∈ E, where wT and vtn+1

are given (3.3.2) and (3.4.12), respectively. Thus, using the monotone conver-
gence theorem, for any t ≥ 0 and x ∈ E, we get

ew(x) = inf
n∈N

ev
t
n+1(x)

= inf
τ∈T

inf
n∈N

Ex
[
e
∫ τ∧t
0 g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}v

t
n(X1)

]
= inf

τ∈T
Ex
[
e
∫ τ∧t
0 g(Xs)ds+1{τ<t}G(Xτ )+1{τ≥t}w(Xt)

]
= eStw(x),

thus w is a solution to (3.4.3).

Proof of (3). Recall that, by (3.4.9), if w is a solution to (3.4.3), then
w(x) = Stw(x), x ∈ E, t ≥ 0. Thus, recalling (3.4.11) and (3.4.12), and
using the fact that 0 ≤ w(·) ≤ G(·), inductively we get vtn(x) ≤ w(x) ≤ vtn(x)
for any t ≥ 0, n ∈ N, and x ∈ E. Thus, using Proposition 3.4.2, we get
wnt(x) ≤ w(x) ≤ wnt(x) for any t ≥ 0, n ∈ N, and x ∈ E. Hence, letting
n→∞ and using the first part of this theorem, we conclude the proof.

Remark 3.4.4. Note that, from the proof of Theorem 3.4.3, we get that, for
any x ∈ E, the stopping time τ̂ ∈ Tx, given by (3.4.17), is optimal for w(x);
see (3.4.18) and the following discussion. However, it should be noted that τ̂
is defined as the limit of τn, which makes it difficult to analyse. In Proposi-
tion 3.4.5 we find an explicit formula for another optimal stopping time for w,
provided that the map x 7→ w(x) is continuous. ♦

Now, we show the closed-form formula for an optimal stopping time for w
under the continuity assumption.

Proposition 3.4.5. Let the map w be given by (3.4.1) and assume that
x 7→ w(x) is continuous. Then, for any x ∈ E, the stopping time

τ := inf{t ≥ 0 : w(Xt) = G(Xt)} ∈ Tx (3.4.23)

is optimal for w(x).

Proof. Using Theorem 3.4.3, we get that w satisfies (3.4.3). Thus, from Propo-
sition 3.4.1, we get that the process (zw(t ∧ τ)), t ≥ 0, given by (3.4.6), is a
martingale. Hence, using the fact that g(·) ≥ c > 0, the non-negativity of w,
the quasi left-continuity of X, and Fatou’s lemma, for any x ∈ E, we get

Ex [ecτ ] ≤ Ex
[
lim inf
t→∞

zw(t ∧ τ)
]

≤ lim inf
t→∞

Ex
[
zw(t ∧ τ)

]
= Ex

[
zw(0)

]
= ew(x) ≤ eG(x) <∞. (3.4.24)
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In particular, we get τ ∈ Tx and, from the continuity of w and the right-
continuity of X, we get w(Xτ ) = G(Xτ ). Thus, using the quasi left-continuity
of X, Fatou’s lemma, and the martingale property of (zw(t∧ τ)), t ≥ 0, we get

ew(x) ≤ Ex
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
= Ex

[
e
∫ τ
0 g(Xs)ds+w(Xτ )

]
= Ex

[
lim
t→∞

e
∫ τ∧t
0 g(Xs)ds+w(Xτ∧t)

]
≤ lim inf

t→∞
Ex
[
e
∫ τ∧t
0 g(Xs)ds+w(Xτ∧t)

]
= ew(x), x ∈ E,

which concludes the proof.

Remark 3.4.6. Recall that, by Remark 3.4.4, the stopping time τ̂ from (3.4.17)
is also optimal for w. It should be noted that the optimal stopping time τ
from (3.4.23) leads to earlier stopping compared to τ̂ . Indeed, noting that
w(·) ≥ wn(·) for any n ∈ N, on the event {τn < n}, we get

w(Xτn) ≥ wn−τn(Xτn) ≥ G(Xτn),

hence we get τ ≤ τn on {τn < n}. Recalling that from (3.4.16) we deduced
Px[
⋃∞
n=0{τn < n}] = 1, x ∈ E, and using the fact that τ̂ = limn→∞ τn, we get

τ ≤ τ̂ . ♦

Now, by analogy to Theorem 3.2.11, we formulate a sufficient condition for
the equality w ≡ w. In particular, this gives uniqueness of a solution to (3.4.3).
To simplify the notation, let us define the process

Z(t) := exp

(∫ t

0
g(Xs)ds+G(Xt)

)
, t ≥ 0. (3.4.25)

Theorem 3.4.7. Let the maps w and w be given by (3.4.1) and (3.4.2), re-
spectively. Also, let τ̂ and (Z(t)), t ≥ 0, be given by (3.4.17) and (3.4.25),
respectively. Assume that, for any x ∈ E, the process (Z(τ̂ ∧ t)), t ≥ 0, is
Px-uniformly integrable. Then:

(1) We get w ≡ w ∈ C+(E).

(2) For any x ∈ E, the stopping time τ ∈ Tx, given by (3.4.23), is optimal
for w(x). Also, we get τ = limT→∞ τT , where τT is given by (3.3.11).

(3) For any x ∈ E, the stopping time τ ∈ Tx given by (3.4.23) is optimal for
w(x) in the sense of (3.1.11), i.e. we get

w(x) = lim inf
T→∞

lnEx
[
e
∫ τ∧T
0 g(Xs)ds+G(Xτ∧T )

]
, x ∈ E. (3.4.26)
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Proof. For transparency, we prove the claims point by point.

Proof of (1). Recall that, by Remark 3.4.4, for any x ∈ E, the stopping time
τ̂ , given by (3.4.17), is optimal for w(x), and we get τ̂ ∈ Tx. Thus, using the
quasi left-continuity of X and the uniform integrability assumption, for any
x ∈ E, we get

ew(x) ≤ lim
T→∞

Ex
[
e
∫ τ̂∧T
0 g(Xs)ds+G(Xτ̂∧T )

]
= Ex

[
e
∫ τ̂
0 g(Xs)ds+G(Xτ̂ )

]
= ew(x).

Recalling that we always have w ≤ w, we conclude the proof of w ≡ w. Note
that the continuity property follows from the lower semi-continuity of w and
the upper semi-continuity of w; see Theorem 3.4.3 for details.

Proof of (2). Note that the optimality of τ follows from Proposition 3.4.5 and
the fact that w ≡ w ∈ C+(E). Let us now show that

τ = lim
T→∞

τT , (3.4.27)

where τT is given by (3.3.11). Recalling Theorem 3.3.2, we get that the map
T 7→ τT is increasing, hence the limit τ := limT→∞ τT is well defined. Also,
recalling that, from (3.4.24), we get Px [τ <∞] = 1, x ∈ E, and using the fact
that w ≡ w ≤ wT , T ≥ 0, on the event {τ ≤ T}, we get

wT−τ (Xτ ) ≥ w(Xτ ) ≥ G(Xτ ).

Thus, noting that wS(·) ≤ G(·), S ≥ 0, we get τT ≤ τ ∧ T . Hence, letting
T → ∞ in, we get τ ≤ τ . In particular, we get Px [τ <∞] = 1, x ∈ E. Also,
recalling the joint continuity of (T, x) 7→ wT (x), we get

wT−τT (XτT ) = G(XτT ). (3.4.28)

We show that this implies w(Xτ ) = G(Xτ ) and consequently τ ≤ τ . First,
note that, from a.s. finiteness of τ , we get (T − τT )→∞ as T →∞. Second,
note that, for any Tn →∞ and xn → x, we get

|wTn(xn)− w(x)| ≤ |wTn(xn)− w(xn)|+ |w(xn)− w(x)| → 0, n→∞;

this follows from Dini’s theorem combined with the fact that (wTn) is a se-
quence of the continuous functions converging monotonically to the continuous
function w. Thus, letting T →∞ in (3.4.28), we get w(Xτ ) = G(Xτ ), which,
combined with the fact that w ≡ w, concludes the proof of this part.
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Proof of (3). To show (3.4.26) it is enough to prove the uniform integrability
of (Z(τ ∧ t)), t ≥ 0, and use the second part of this theorem. Recalling that
w(·) ≥ wT (·), T ≥ 0, on the set {τT < T}, we get

w(XτT ) ≥ wT−τT (XτT ) ≥ G(XτT ),

where τT is given by (3.3.9). Thus, letting T → ∞, using the continuity
of w, and recalling (3.4.17), we get w(Xτ̂ ) ≥ G(Xτ̂ ). In fact, noting that
w(·) ≤ G(·), we get w(Xτ̂ ) = G(Xτ̂ ). Thus, recalling (3.4.23), we get

τ ≤ τ̂ . (3.4.29)

From Lemma 3.1.2 and the uniform integrability of (Z(τ̂ ∧ t)), t ≥ 0, for
any x ∈ E, we get lim infT→∞ Ex

[
1{τ̂>T}Z(T )

]
= 0. Hence, using (3.4.29),

for any x ∈ E, we also get lim infT→∞ Ex
[
1{τ>T}Z(T )

]
= 0 and, again by

Lemma 3.1.2, we conclude the proof of the uniform integrability of (Z(τ ∧ t)),
t ≥ 0. Thus, recalling parts (1) and (2), for any x ∈ E, we get

ew(x) = ew(x) = Ex
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
= lim

T→∞
Ex
[
e
∫ τ∧T
0 g(Xs)ds+G(Xτ∧T )

]
,

which concludes the proof.

Remark 3.4.8. Recall that in (3.4.2), to define w, we used the family of
bounded stopping times. However, it is not clear if the stopping time τ
from (3.4.23) belongs to Tx,b. Thus, the optimality of τ in (3.4.26) is un-
derstood in the context of Proposition 3.1.1, where we provide an alternative
formulation for w. ♦

Remark 3.4.9. In Theorem 3.4.7, the continuity of w was a consequence of the
identity w ≡ w. However, if we know in advance that w is continuous, we
may obtain the results of Theorem 3.4.7 under weaker conditions. Namely,
following the proof of Theorem 3.4.7, we can see that, assuming the continuity
of w, one may replace the uniform integrability of (Z(τ̂ ∧ t)), t ≥ 0, by the
uniform integrability of (Z(τ ∧ t)), t ≥ 0, where τ is given by (3.4.23). Note
that, by Remark 3.4.6, the latter condition is less restrictive as τ ≤ τ̂ . ♦

As in the discrete time case, if G is bounded, the uniform integrability
condition is satisfied, cf. Proposition 3.2.13.

Proposition 3.4.10. Let G ∈ C+
b (E). Then, for any x ∈ E, the process

(Z(τ̂ ∧ t)), t ≥ 0, from Theorem 3.4.7, is Px-uniformly integrable.
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Proof. Recalling (3.4.15) and the following discussion, for any x ∈ E, we get
that, for Px almost all ω ∈ Ω, starting from some n ∈ N (depending on ω), the
sequence (τn(ω)) is decreasing. Thus, using the right-continuity of X, we get
G(Xτ̂ ) = limn→∞ 1{τn<n}G(Xτn). Consequently, recalling the non-negativity
of G, Theorem 3.3.2, and using Fatou’s lemma, for any x ∈ E, we get

Ex
[
e
∫ τ̂
0 g(Xs)ds

]
≤ Ex

[
e
∫ τ̂
0 g(Xs)ds+G(Xτ̂ )

]
= Ex

[
lim
n→∞

e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

]
≤ lim

n→∞
Ex
[
e
∫ τn
0 g(Xs)ds+1{τn<n}G(Xτn )

]
= lim

n→∞
ewn(x) ≤ eG(x) <∞.

Combining this with the inequality Z(τ̂ ∧ t) ≤ e
∫ τ̂
0 g(Xs)dse‖G‖, t ≥ 0, we get

that, by Lebesgue’s dominated convergence theorem, the process (Z(τ̂ ∧ t)),
t ≥ 0, is uniformly integrable, which concludes the proof.

For ease of reference, the properties of the optimal stopping problems with
a bounded terminal cost function G are summarised in the following theorem.

Theorem 3.4.11. Let G ∈ C+
b (E) and let the maps w and w be given by (3.4.1)

and (3.4.2), respectively. Also, let w ∈ M+(E) be a solution to the Bellman
equation (3.4.3). Then, we get

w ≡ w ≡ w ∈ C+
b (E).

Also, for any x ∈ E, the stopping time

τ := inf{t ≥ 0 : w(Xt) = G(Xt)} ∈ Tx

is optimal for w(x). Moreover, for any x ∈ E, the process

zw(t) := exp

(∫ t

0
g(Xs)ds+ w(Xt)

)
, t ≥ 0,

is a Px-submartingale and (zw(τ ∧ t)), t ≥ 0, is a Px-martingale.

Proof. Using Proposition 3.4.10 and Theorem 3.4.7, we get w ≡ w; note
that this identity may also be deduced from Corollary 3.1.3. This, combined
with Theorem 3.4.3, shows the uniqueness of a solution to the Bellman equa-
tion (3.4.3). Also, using the semi-continuity properties from Theorem 3.4.3, we
get w ≡ w ∈ C+

b (E). Finally, recalling Proposition 3.4.1 and Proposition 3.4.5,
we conclude the proof.
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3.5 Approximation of optimal stopping problems

In this section, we consider two types of approximation schemes for the optimal
stopping problems. Throughout this section, by ((Xt)t≥0, (Px)x∈E) we denote
a continuous time standard Cb-Feller–Markov process on (Ω,F ,F) with values
in (E, E). Also, we assume (A1)–(A4).

3.5.1 Approximation with a bounded terminal cost function

In this section, we show that the map w given by (3.4.1) could be approxi-
mated by optimal stopping value functions with truncated terminal cost. More
explicitly, for any n ∈ N, we define

wn(x) := inf
τ∈Tx

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ ) ∧ n

)]
, x ∈ E. (3.5.1)

Directly from the definition we get wn(x) ≤ wn+1(x) ≤ w(x) for any x ∈ E
and n ∈ N. In Theorem 3.5.1 we show that in the limit we get w; note that
a similar property in the finite time horizon setting was shown in Step 3 of
the proof of Theorem 3.3.2. The main difficulty here could be associated with
the fact that, for any x ∈ E, the sequence (wn(x))n∈N is increasing. Thus, in
the proof we need to interchange the supremum with respect to n with the
infimum with respect to τ .

Theorem 3.5.1. For any n ∈ N, let the maps w and wn be given by (3.4.1)
and (3.5.1), respectively. Then, we get

w(x) = lim
n→∞

wn(x), x ∈ E.

Proof. Let us define the sequence of events An := {G(Xτn) ≤ n}, n ∈ N,
where

τn := inf{t ≥ 0 : wn(Xt) = G(Xt) ∧ n}.

Noting that G(·)∧ n ∈ C+
b (E) and using Theorem 3.4.11, we get that τn is an

optimal stopping time for wn(x), n ∈ N, x ∈ E. Also, recalling that g(·) ≥ 0,
for any x ∈ E and k ∈ N, we get

eG(x) ≥ ewk(x) = Ex
[
e
∫ τk
0 g(Xs)ds+G(Xτk )∧k

]
≥ Ex

[
1Acke

∫ τk
0 g(Xs)ds+G(Xτk )∧k

]
≥ Px [Ack] e

k.
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Thus Px [Ack] ≤
eG(x)

ek
and

∑∞
k=1 Px [Ack] < ∞, x ∈ E. Hence, from the Borel-

Cantelli lemma, for any x ∈ E, we get

Px [∪∞n=1 ∩∞k=n Ak] = 1. (3.5.2)

Let us fix n ∈ N and note that, on the event ∩∞k=nAk, for any j ∈ N, we get

wn+j+1(Xτn+j ) ≥ wn+j(Xτn+j ) = G(Xτn+j ) ∧ (n+ j)

= G(Xτn+j ) ≥ G(Xτn+j ) ∧ (n+ j + 1).

Thus, noting that wn+j+1(·) ≤ G(·)∧ (n+ j+ 1), j ∈ N, on the event ∩∞k=nAk,
for any j ∈ N, we get τn+j+1 ≤ τn+j . Combining this with (3.5.2), we may
define the stopping time τ̃ := limn→∞ τn. Moreover, we get that τ̃ ∈ Tx, since,
for any n ∈ N, we get τn ∈ Tx. Thus, using the right-continuity of X and
Fatou’s lemma, for any x ∈ E, we get

ew(x) ≤ Ex
[
e
∫ τ̃
0 g(Xs)ds+G(Xτ̃ )

]
= Ex

[
lim
n→∞

e
∫ τn
0 g(Xs)ds+G(Xτn )∧n

]
≤ lim

n→∞
Ex
[
e
∫ τn
0 g(Xs)ds+G(Xτn )∧n

]
= lim

n→∞
ew

n(x) ≤ ew(x).

Consequently, we get limn→∞w
n(x) = w(x), x ∈ E, which concludes the

proof.

Remark 3.5.2. By analogy to Theorem 3.5.1, one could try to approximate
the map w from (3.4.2) by the family

wn(x) := inf
τ∈Tx,b

lnEx
[
e
∫ τ
0 g(Xs)ds+G(Xτ )∧n

]
, n ∈ N, x ∈ E.

However, since, for any n ∈ N, the map G(·) ∧ n is bounded, using Theo-
rem 3.4.11, we get wn ≡ wn and, by Theorem 3.5.1, we get wn → w. ♦

3.5.2 Dyadic approximation

In this section, we investigate an approximation scheme related to the dyadic
time-grid. We focus on the bounded case and throughout this section we
assume G ∈ C+

b (E). Hence, using Theorem 3.4.11, we get that the value
functions from (3.4.1) and (3.4.2) are equal and, to simplify the notation, we
set

w(x) := inf
τ∈Tx

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
,

= inf
τ∈Tx,b

lnEx
[
exp

(∫ τ

0
g(Xs)ds+G(Xτ )

)]
, x ∈ E. (3.5.3)
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In Theorem 3.5.3 we show that the map w from (3.5.3) may be approxi-
mated by a family optimal stopping problems on the dyadic time-grid, where
the cost functions could be subject to some additional modifications. More
explicitly, recall the families of stopping times T mx and T mx,b from Section 2.1.

Let (gm)m∈N and (Gm)m∈N be fixed sequences of functions from C+
b (E). We

assume that gm ↑ g as m → ∞ with g0(·) ≥ c0 > 0 and Gm(x) → G(x) as
m→∞ uniformly in x ∈ E. Within this framework, we set

wm(x) := inf
τ∈T mx

lnEx
[
exp

(∫ τ

0
gm(Xs)ds+Gm(Xτ )

)]
= inf

τ∈T mx,b
lnEx

[
exp

(∫ τ

0
gm(Xs)ds+Gm(Xτ )

)]
, m ∈ N, x ∈ E,

(3.5.4)

where the second line follows from Theorem 3.2.15.
In Theorem 3.5.3 we show that wm(x) converges to w(x) as m → ∞

uniformly in x from compact sets. Note that this property provides a link
between the continuous and discrete time optimal stopping frameworks. In-
deed, for the constant sequences (gm) and (Gm), the map wm may be seen
as a version of (3.5.3) with stopping times restricted to the dyadic time-grid.
Thus, Theorem 3.5.3 implies that the continuous time stopping problem may
be approximated by its dyadic counterpart even in the infinite time horizon;
see Step 2 in the proof of Theorem 3.3.2 for a similar result in the finite
time horizon. Also, this result helps to establish the existence of a solution
to the continuous time optimality equation for impulse control problems; see
Theorem 4.3.8 for details.

Theorem 3.5.3. For any m ∈ N, let the maps w and wm be given by (3.5.3)
and (3.5.4), respectively. Then, we get wm(x)→ w(x), as m→∞, uniformly
in x from compact sets.

Proof. We start with describing the structure of the proof. Recalling the non-
negativity of g and G, we get ew(x) ≥ 1 and ew

m(x) ≥ 1, m ∈ N, x ∈ E. Thus,
using the inequality | ln y − ln z| ≤ 1

min(y,z) |y − z|, y, z > 0, we get

|w(x)− wm(x)| ≤ |W (x)−Wm(x)|, x ∈ E,

where we set

W (x) := inf
τ∈Tx

Ex
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
, x ∈ E,

Wm(x) := inf
τ∈T mx

Ex
[
e
∫ τ
0 gm(Xs)ds+Gm(Xτ )

]
, m ∈ N, x ∈ E.

77:1052513277



74

Consequently, it is enough to show that Wm(x) converges to W (x) as m→∞
uniformly in x from compact sets.

Next, define

Wm(x) := inf
τ∈T mx

Ex
[
e
∫ τ
0 gm(Xs)ds+G(Xτ )

]
, m ∈ N, x ∈ E,

and note that

|W (x)−Wm(x)| ≤ |W (x)−Wm(x)|+ |Wm(x)−Wm(x)|, m ∈ N, x ∈ E.

Thus, it is sufficient to show that |W (x) − Wm(x)| and |Wm(x) − Wm(x)|
converge to zero uniformly in x from compact sets. Moreover, noting that
T mx ⊂ Tx, x ∈ E, and gm ↑ g, we get

Wm(x) ≤Wm(x) ≤Wm(x), m ∈ N, x ∈ E,

where the lower and upper bounds of Wm are given by

Wm(x) := inf
τ∈Tx

Ex
[
e
∫ τ
0 gm(Xs)ds+G(Xτ )

]
, m ∈ N, x ∈ E,

Wm(x) := inf
τ∈T mx

Ex
[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
, m ∈ N, x ∈ E.

Hence, for the convergence of Wm to W , it is sufficient to show that both Wm

and Wm converge to W uniformly on compact sets.
For transparency, we split the rest of the argument into three steps: (1)

proof that |Wm − W | → 0; (2) proof that |Wm − W | → 0; (3) proof that
|Wm −Wm| → 0.

Step 1. We show that |Wm(x) − W (x)| → 0 as m → ∞ uniformly in x
from compact sets. Recalling that gm ↑ g as m → ∞, for any x ∈ E and
m ∈ N, we get W (x) ≥ Wm(x) and Wm+1(x) ≥ Wm(x). Thus, the limit
W (x) := limm→∞Wm(x) is well defined, and W (x) ≥ W (x), x ∈ E. Also,
using Theorem 3.4.11, for any m ∈ N and x ∈ E, we get that the stopping
time

τm := inf
{
t ≥ 0 : Wm(Xt) = eG(Xt)

}
is optimal for Wm(x). Since τm+1 ≤ τm, m ∈ N, the limit τ := limm→∞ τm is
well defined and τ ∈ Tx as, for any m ∈ N and x ∈ E, we get τm ∈ Tx. Then,
using Fatou’s lemma and the right-continuity of X, we get

W (x) ≥ lim
m→∞

Wm(x)

= lim
m→∞

Ex
[
e
∫ τm
0 gm(Xs)ds+G(Xτm )

]
≥ Ex

[
lim inf
m→∞

e
∫ τm
0 gm(Xs)+G(Xτm )

]
= Ex

[
e
∫ τ
0 g(Xs)ds+G(Xτ )

]
≥W (x).
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Thus, we get W (x) = W (x), x ∈ E.

Using Theorem 3.4.11, we get that, for any m ∈ N, the maps x 7→Wm(x)
and x 7→ W (x) are continuous. Noting that, for any x ∈ E, the convergence
Wm(x)→W (x) as m→∞ is monotone, by Dini’s theorem, we conclude that
Wm(x)→W (x) as m→∞ uniformly in x from compact sets.

Step 2. We show that |Wm(x) −W (x)| → 0 as m → ∞ uniformly in x from
compact sets. Noting that T mx ⊂ T m+1

x ⊂ Tx, we get Wm+1(x) ≤Wm(x) and
W (x) ≤ Wm(x), m ∈ N, x ∈ E. Thus, the limit W (x) := limm→∞Wm(x) is
well defined and W (x) ≤W (x), x ∈ E.

Now, we show W (x) ≤ W (x), x ∈ E. Note that, by Theorem 3.4.11, the
stopping time τ̃ := inf{t ≥ 0 : W (Xt) = eG(Xt)} is optimal for W (x), x ∈ E.
Next, let τ̃m denote T m approximation of τ̃ given by

τ̃m := inf{τ ∈ T m : τ ≥ τ̃} =
∑∞

j=1 1{ j−1
2m

<τ̃≤ j
2m }

j
2m .

Note that τ̃m ↓ τ̃ , m → ∞, and Ex
[
e
∫ τ̃
0 g(Xs)ds+G(Xτ̃ )

]
= W (x) < ∞, x ∈ E.

Since g(·) ≥ 0 and 0 ≤ G(·) ≤ ‖G‖, for any m ∈ N, we get

e
∫ τ̃m
0 g(Xs)ds+G(Xτ̃m ) ≤ e

∫ τ̃+1
0 g(Xs)ds+‖G‖ ≤ e‖g‖+‖G‖e

∫ τ̃
0 g(Xs)ds+G(Xτ̃ ).

Consequently, using Lebesgue’s dominated convergence theorem, the fact that
τ̃m ↓ τ̃ , and the right-continuity of X, we get

W (x) = lim
m→∞

Wm(x) ≤ lim
m→∞

Ex
[
e
∫ τ̃m
0 g(Xs)ds+G(Xτ̃m )

]
= Ex

[
lim
m→∞

e
∫ τ̃m
0 g(Xs)ds+G(Xτ̃m )

]
= Ex

[
e
∫ τ̃
0 g(Xs)ds+G(Xτ̃ )

]
= W (x),

which shows W (x) ≤W (x), for x ∈ E.

Using Theorem 3.2.15, we get that x 7→ Wm(x) is continuous for any
m ∈ N. Also, using Theorem 3.4.11, we get that the map x 7→ W (x) is
continuous, too. Recalling that the convergence Wm(x)→W (x) is monotone,
and using Dini’s theorem, we conclude that Wm(x) → W (x) as m → ∞
uniformly in x from compact sets.

Step 3. We show that |Wm(x) − Wm(x)| → 0 as m → ∞ uniformly in
x ∈ E. To simplify the notation, for any m ∈ N and x ∈ E, we set
am(x) := max(Wm(x),Wm(x)).
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First, let m ∈ N and assume that x ∈ E is such that Wm(x) ≤ Wm(x).
Let τm be an optimal stopping time for Wm; using Theorem 3.2.15 we know
that τm exists. Then, recalling that Gm(·) ≥ 0, we get

0 ≤Wm(x)−Wm(x) ≤ Ex
[
e
∫ τm
0 gm(Xs)ds

(
eG(Xτm ) − eGm(Xτm )

)]
≤ Ex

[
e
∫ τm
0 gm(Xs)ds+Gm(Xτm )

]
‖eG − eGm‖

= Wm(x)‖eG − eGm‖ ≤ am(x)‖eG − eGm‖. (3.5.5)

Second, let us assume that x ∈ E is such that Wm(x) ≥ Wm(x). Then, as in
the previous case, we get

0 ≤Wm(x)−Wm(x) ≤ am(x)‖eG − eGm‖. (3.5.6)

Combining (3.5.5) and (3.5.6), for any x ∈ E and m ∈ N, we get

|Wm(x)−Wm(x)| ≤ am(x)‖eG − eGm‖.

Since Gm → G uniformly, for a sufficiently large m, we get

‖am‖ ≤ max(‖Wm‖, ‖Wm‖) ≤ max(e‖Gm‖, e‖G‖) ≤ e‖G‖+1.

Combining this with the inequality |ez − ey| ≤ emax(z,y)|z − y|, z, y ∈ R, for a
sufficiently large m, we get

|Wm(x)−Wm(x)| ≤ e2‖G‖+2‖Gm −G‖ → 0, x ∈ E,

which concludes the proof.
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Chapter 4

Impulse control problems

In this chapter, we consider risk-sensitive impulse control problems for con-
tinuous time Markov processes. We introduce suitable versions of optimality
Bellman equations and construct optimal strategies for finite and infinite time
horizon (long-run) problems. Our approach is based on probabilistic argu-
ments and the results from Chapter 3.

This chapter is organised as follows: In Section 4.1, we state the main
problem and introduce the set of assumptions. In Section 4.2, we discuss the
finite time horizon impulse control problem. In particular, in Theorem 4.2.2
we provide a verification result, in Theorem 4.2.5 we construct a solution to the
optimality equation, and in Proposition 4.2.9 we show a specific approximation
result. Next, in Section 4.3, we discuss the long-run impulse control problem.
In particular, in Theorem 4.3.4 we show a suitable verification argument and
in Theorem 4.3.8 we show the existence of a solution to the associated Bell-
man equation. For the reader’s convenience, in Section A.4 in Appendix A,
we collect selected properties of the Multiplicative Poisson Equation, which
are used in Section 4.3. Also, the assumptions introduced in Section 4.1 are
illustrated by the examples presented in Section 5.2.

The results presented in this chapter are based mainly on Jelito et al.
(2020), where the long-run impulse control problem were considered. How-
ever, note that in this chapter we provide a more detailed discussion on the
finite time horizon stopping problems. In particular, we construct a generic
optimal impulse control strategy for this class of problems while, in the paper,
the analysis was restricted to the strategies with finitely many impulses; see
Theorem 4.2.2 and Theorem 4.2.5 for details.
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4.1 Problem statement and assumptions

In this section, we state the main problem and introduce the notation and
assumptions used throughout this chapter. We focus on the long-run setting;
necessary modifications for the finite time horizon case are discussed at the
beginning of Section 4.2.

By ((Xt)t≥0, (Px)x∈E) we denote a continuous time standard Cb-Feller-
Markov process on (Ω,F ,F) with values in (E, E). As in Section 2.2, with
a starting point x ∈ E and an impulse control strategy V = (τi, ξi)

∞
i=1 ∈ V, we

associate the controlled process, the corresponding probability measure, and
the expectation operator denoted by Y , P(x,V ), and E(x,V ), respectively. Re-
call that an impulse control strategy V = (τi, ξi)

∞
i=1 is described by sequences

(τi) and (ξi) indicating impulse times and after-impulse states of the process,
respectively, and Yτ−i

denotes the state of Y right before the ith impulse; see

Section 2.2 for details. Throughout this chapter we assume that after-impulse
states are restricted to some fixed compact set U ⊆ E, i.e. ξi ∈ U , i ∈ N∗.

The main focus of this chapter is set on the minimising the long-run risk-
sensitive impulse control problem

inf
V ∈V

lim sup
T→∞

1

T
lnE(x,V )

[
exp

(∫ T

0
f(Ys)ds+

∞∑
i=1

1{τi≤T}c(Yτ−i
, ξi)

)]
,

(4.1.1)
where f ∈ C+

b (E) and c ∈ C+
b (E × U) are a running reward/cost function and

a shift-cost function, respectively. Under a suitable regularity conditions, we
find the optimal value and an optimal strategy for (4.1.1). In fact, we prove
the existence of a solution to the suitable Bellman equation and link it to
the optimal strategy; see Theorem 4.3.4 and Theorem 4.3.8. The argument is
based on the dyadic approximation of the problem and utilises some results
from Pitera and Stettner (2021). More specifically, in that paper the local span
contraction technique is used to prove the existence of a solution to the associ-
ated optimality equation in the dyadic framework; see Section A.3 for details.
In the present chapter we combine these results with the regularity properties
of the optimal stopping problems that were discussed in Chapter 3 and show
how this can be used to deduce the existence of a solution to the suitable opti-
mality equation in the continuous time case. To embed the associated optimal
stopping problems into the framework considered in Chapter 3, we use the
change of measure transformation based on a solution to the Multiplicative
Poisson Equation; see Section A.4 for details.

Also, in this chapter we study a finite time horizon version of (4.1.1).
We characterise the optimal strategy and provide an efficient approximation
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scheme for the value function. The properties of finite time horizon functionals
could be seen as a problem of independent interest. Also, they are used in
Theorem 4.3.9 to obtain some results in the long-run setting.

In this chapter we assume the following conditions:

(B1) (After-impulse states constraints.) After-impulse states take values in
some fixed compact set U ⊂ E, i.e. for any strategy V = (τi, ξi)

∞
i=1 ∈ V

we have ξi ∈ U , i ∈ N∗.

(B2) (Reward/cost function constraints.) We have f ∈ C+
b (E).

(B3) (Impulse cost function constraints.) We have c ∈ C+
b (E × U). Also, c is

bounded away from zero by c0 > 0 and satisfies the triangle inequality,
i.e. we have

c0 ≤ c(x, ξ) ≤ c(x, ζ) + c(ζ, ξ), x ∈ E, ξ, ζ ∈ U. (4.1.2)

Moreover, c satisfies uniform limit at infinity condition, i.e. we have

lim
‖x‖,‖y‖→∞

sup
ξ∈U
|c(x, ξ)− c(y, ξ)| = 0. (4.1.3)

(B4) (Distance control.) For any compact set Γ ⊂ E, t0 > 0, and r0 > 0, we
have

lim
r→∞

MΓ(t0, r) = 0, lim
t→0

MΓ(t, r0) = 0, (4.1.4)

where MΓ(t, r) := supx∈Γ Px[sups∈[0,t] ρ(Xs, x) ≥ r], t, r > 0.

(B5) (Mixing condition.) For any t > 0, we have Et(x) = Et(y), x, y ∈ E, and

sup
x,y∈E

sup
A∈Et(y)

Px[Xt ∈ A]

Py[Xt ∈ A]
<∞, (4.1.5)

where Et(y) := {A ∈ E : Py[Xt ∈ A] > 0}. Also, for any t > 0 and x ∈ E,
we have U ∈ Et(x).

Let us now provide more extensive comments on these assumptions.

Assumption (B1) is a standard condition stating that we may shift the
process only to some compact subset of the state space. From the economic
point of view, this assumption may reflect limited impact of a decision-maker
on the market. Also, it helps to get the measurability of optimal strategies;
see the discussion following (4.2.7) for details.
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Assumption (B2) constitutes classic reward/cost function constraints. Note
that the non-negativity condition for f is only a technical normalisation. In-
deed, for a generic f̃ ∈ Cb(E) we may add to the both sides of (4.1.1) the
quantity ‖f̃‖ and set f(·) := f̃(·) + ‖f̃‖ ∈ C+

b (E); see the similar comment
for (A1) in Section 3.1.

Assumption (B3) imposes several restrictions on the cost function c. In
particular, (4.1.2) is a standard assumption that can be used to exclude mul-
tiple impulses at the same time. More specifically, based on (4.1.2), we get
that when one considers an impulse from x to ζ followed by an immediate
impulse from ζ to ξ, it is rational to apply an impulse from x directly to ξ,
without the intermediate point ζ. Next, the condition (4.1.3) could be used
to show a uniform convergence of a suitable approximation of the optimality
equation associated with (4.1.1); see Theorem 4.3.8 for details. In the follow-
ing example we show that Assumption (B3) is satisfied for many distance-like
cost functions.

Example 4.1.1. Let h ∈ C+
b (R+) be an increasing map satisfying subadditiv-

ity condition h(x+ y) ≤ h(x) + h(y), x, y ≥ 0. Also, let c0 > 0 and recall that
ρ is a metric on E. Then, the function c(x, ξ) := h(ρ(x, ξ))+ c0, x ∈ E, ξ ∈ U ,
satisfies (B3). For example, we may set h1(x) := x ∧ K with some K ≥ 0,
h2(x) = x

1+x , or h3(x) := 1
1+e−x .

To see that (4.1.2) is satisfied, it is enough to note that from the mono-
tonicity and subadditivity conditions, for any x ∈ E and ξ, ζ ∈ U , we get

c(x, ξ) = h(ρ(x, ξ)) + c0 ≤ h(ρ(x, ζ) + ρ(ζ, ξ)) + 2c0

≤ h(ρ(x, ζ)) + c0 + h(ρ(ζ, ξ)) + c0

= c(x, ζ) + c(ζ, ξ).

Also, to see (4.1.3), note that, from the compactness of U , we get ρ(x, ξ)→∞
as ‖x‖ → ∞ uniformly in ξ ∈ U . Thus, recalling the monotonicity and the
boundedness of h, we get h(ρ(x, ξ)) → ‖h‖ as ‖x‖ → ∞ uniformly in ξ ∈ U .
Consequently, we get

lim
‖x‖,‖y‖→∞

sup
ξ∈U
|h(ρ(x, ξ))− h(ρ(y, ξ))| = 0,

which shows (4.1.3). �

Assumption (B4) facilitates distance control of the uncontrolled process.
In fact, this condition is identical with Assumption (A4) that was used in
Chapter 3.
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Assumption (B5) quantifies ergodic properties of the underlying uncon-
trolled process X. Equivalently, we can state that, for any t > 0, there exists
a probability measure νt on (E, E), a density pt : E ×E → R+, and constants
0 < at ≤ bt <∞, such that

Px[Xt ∈ A] =

∫
A
pt(x, y)νt(dy), A ∈ E , (4.1.6)

with νt(U) > 0 and at ≤ pt(x, y) ≤ bt, x, y ∈ E. Indeed, from (B5), for any
fixed t > 0, we get that the distributions Px[Xt ∈ · ], x ∈ E, are equivalent.
Thus, setting νt(·) := Px0 [Xt ∈ · ], where x0 ∈ E is some fixed point, and
noting that, from (4.1.5), the density of Px[Xt ∈ · ] with respect to νt(·) must
be bounded, we get (4.1.6). Also, from (4.1.6) we directly get (B5), thus these
conditions are equivalent. Next, note that (4.1.6) is satisfied e.g. for regular
reflected diffusions in bounded domains; see Section 5.2 for details. Also, it
should be noted that this condition implies the global minorisation property
as well as the existence of a solution to the Multiplicative Poisson Equation.
Namely, under (B5), we get the following two properties:

(B5a) (Global minorisation.) For any t > 0, there exists at > 0 and a proba-
bility measure νt on (E, E), such that νt(U) > 0 and

inf
x∈E

Px[Xt ∈ A] ≥ atνt(A), A ∈ E .

(B5b) (Existence of MPE solution.) There exists a map v ∈ Cb(E) satisfying
the Multiplicative Poisson Equation

v(x) = lnEx
[
exp

(∫ t

0
(f(Xs)− r(f))ds+ v(Xt)

)]
, x ∈ E, t ≥ 0,

(4.1.7)
where r(f) is the semi-group type given by

r(f) := inf
t>0

1

t
ln sup
x∈E
Pft 1(x) (4.1.8)

with Pft given by (2.1.5) and 1 denoting the function identically equal
to 1.

Condition (B5a) is a direct consequence of (4.1.6) while (B5b) follows from
Theorem A.4.1 in Section A.4. In fact, all the proofs presented in this chapter
are valid if we only assume the global minorisation and the existence of a
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solution to the Multiplicative Poisson Equation, i.e. replace (B5) with (B5a)
and (B5b). Nevertheless, we introduced stronger condition (B5) to simplify
the narrative.

Condition (B5a) constitutes the global minorisation property of the un-
controlled process and could be linked to the (global) Doeblin condition and
uniform ergodicity; see Hairer and Mattingly (2011) for details. Also, this
condition is used in Pitera and Stettner (2021) to prove the existence of a
solution to the dyadic version of (4.3.3); see Assumption (A.4) therein and
Proposition A.3.1 in this thesis.

Condition (B5b) gives the existence of a solution to the Multiplicative
Poisson Equation. With this solution we may associate a change of measure
transformation that simplifies some stochastic optimisation problems. We re-
fer to Section A.4 for a more detailed discussion on the Multiplicative Poisson
Equation. Also, more specific comments on the use of change of measure
transformation associated with (4.1.7) can be found in Section 4.3; see Equa-
tion (4.3.5) and the following discussion.

4.2 Finite time horizon impulse control

In this section, we study the finite time horizon version of (4.1.1). More
explicitly, for any T ≥ 0, x ∈ E, and V ∈ V, we define

JT (x, V ) := lnE(x,V )

[
exp

(∫ T

0
f(Ys)ds+

∞∑
i=1

1{τi≤T}c(Yτ−i
, ξi)

)]
. (4.2.1)

With the help of a suitable form of the Bellman equation, we construct an
optimal impulse control strategy for

inf
V ∈V

JT (x, V ), T ≥ 0, x ∈ V. (4.2.2)

Also, we show several approximation results, including limits of problems with
finitely many impulses. These results, apart from their own merit, are used
in the proof of Theorem 4.3.9. In this section we assume (B1)–(B4); Assump-
tion (B5) is not needed here. Also, in Assumption (B3) we may omit the
uniform limit at infinity condition (4.1.3).

4.2.1 Verification theorem

To solve (4.2.2), we show the existence of a solution uT ∈ C+
b ([0, T ] × E) to

the associated Bellman equation given, for any T ≥ 0, t ∈ [0, T ], and x ∈ E,
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by

uT (t, x) = inf
τ≤T−t

lnEx
[
exp

(∫ τ

0
f(Xs)ds+ 1{τ<T−t}MuT (t+ τ,Xτ )

)]
,

(4.2.3)
where the operator M : C+

b ([0,∞)× E)→ C+
b ([0,∞)× E) is defined as

Mh(t, x) := inf
ξ∈U

(c(x, ξ)+h(t, ξ)), h ∈ C+
b ([0,∞)×E), t ≥ 0, x ∈ E. (4.2.4)

In fact, we show that uT (0, x) gives the optimal value of infV ∈V JT (x, V ),
T ≥ 0, x ∈ E. Also, we show that optimal impulse times could be associated
with optimal stopping times for uT , while optimal after-impulse states are
given by the minimisers for MuT ; see Theorem 4.2.2 for details. Before we do
this, let us characterise optimal stopping times associated with (4.2.3).

Proposition 4.2.1. For any T ≥ 0, let uT ∈ C+
b ([0, T ] × E) be a solution

to (4.2.3). Then, for any T ≥ 0, t ∈ [0, T ], and x ∈ E, the stopping time

τT (t) := inf{s ≥ 0 : uT (t+ s,Xs) = MuT (t+ s,Xs)} ∧ (T − t)

is optimal for uT (t, x). Also, for any T ≥ 0, t ∈ [0, T ], and x ∈ E, the process

zT,t(s) := exp

(∫ s∧(T−t)

0
f(Xh)dh+ uT (t+ s ∧ (T − t), Xs∧(T−t))

)
, s ≥ 0,

is a Px-submartingale and (zT,t(τT (t) ∧ s), s ≥ 0, is a Px-martingale.

Proof. We transform the optimal stopping problem associated with (4.2.3)
into the framework of Theorem 3.3.4. Let us fix T ≥ 0 and, for any t ∈ [0, T ]
and x ∈ E, let us define g̃(t, x) := f(x) and G̃(t, x) := MuT (t, x). Also, for
any T ′ ∈ [0, T ], t′ ∈ [0, T − T ′], we define

wT ′(t
′, x) := inf

τ≤T ′
lnEx

[
exp

(∫ τ

0
g̃(t′ + s,Xs)ds+ 1{τ<T ′}G̃(t′ + τ,Xτ )

)]
.

Recalling Assumption (B2), we get g̃ ∈ C+
b ([0, T ]× E). Also, recalling (4.2.4)

and using the fact that uT ∈ C+
b ([0, T ]×E), we get G̃ ≡MuT ∈ C+

b ([0, T ]×E).
Thus, using Theorem 3.3.4, we get that, for any T ′ ∈ [0, T ], t′ ∈ [0, T − T ′],
and x ∈ E, the stopping time

τT ′(t
′) := inf{s ≥ 0: wT ′−s(t

′ + s,Xs) = G̃(t′ + s,Xs)} ∧ T ′ (4.2.5)
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is optimal for wT ′(t
′, x), the process

zT ′,t′(s) := e
∫ s∧T ′
0 g̃(t′+h,Xh)dh+wT ′−s∧T ′ (t

′+s∧T ′,Xs∧T ′ ), s ≥ 0,

is a Px-submartingale and (zT ′,t′(τT ′(t
′)∧s)), s ≥ 0, is a Px-martingale. Next,

note that uT (t, x) = wT−t(t, x), t ∈ [0, T ], x ∈ E. Thus, for any t ∈ [0, T ] and
x ∈ E, using (4.2.5) with T ′ = T − t and t′ = t, we get that the stopping time

τT−t(t) = inf{s ≥ 0: wT−t−s(t+ s,Xs) = G̃(t+ s,Xs)} ∧ (T − t)
= inf{s ≥ 0: uT (t+ s,Xs) = MuT (t+ s,Xs)} ∧ (T − t) = τT (t)

is optimal for uT (t, x). Using a similar argument, from the submartingale
property of (zT ′,t′(s)), s ≥ 0, and the martingale property of (zT ′,t′(τT ′(t

′)∧s)),
s ≥ 0, we get that (zT,t(s)), s ≥ 0, is a Px-submartingale and (zT,t(τT (t) ∧ s),
s ≥ 0, is a Px-martingale, which concludes the proof.

Let us now provide a more detailed comment on the link between (4.2.3)
and (4.2.2). Let T ≥ 0 and uT ∈ C+

b ([0, T ] × E) be a solution to (4.2.3); the
existence of this map is shown in Theorem 4.2.5. We construct a strategy
associated with uT . First, for any t ∈ [0, T ] and i = 1, 2, . . ., let us recursively
define

τ̃i(t) := inf{s ≥ τ̃i−1(t) : uT (t+ s,Xi
s) = MuT (t+ s,Xi

s)} ∧ (T − t),

ξ̃i(t) := arg min
ξ∈U

(
c(Xi

τ̃i(t)
, ξ) + uT (t+ τ̃i(t), ξ)

)
, (4.2.6)

where τ̃0(t) ≡ 0. Next, we define the strategy V̂ (t) := (τ̂i(t), ξ̂i(t))
∞
i=1 ∈ V,

where, for any i = 1, 2, . . ., we set

τ̂i(t) := τ̃i(t)1{τ̃i(t)<T−t} +∞1{τ̃i(t)=T−t}

ξ̂i(t) := ξ̃i(t)1{τ̃i(t)<T−t} + ξ01{τ̃i(t)=T−t}, (4.2.7)

and ξ0 ∈ U is some fixed point. Note that (τ̂i(t)) is a simple modification
of (τ̃i(t)) which excludes impulses at the terminal point T − t. Intuitively,
the impulse times for the strategy V̂ (t) are given by optimal stopping times
for (4.2.3) while the after-impulse states are given by the minimisers of MuT .
Note that compactness of U and continuity of uT guarantees the existence of
a measurable minimiser.

The following theorem provides a verification result associated with the
Bellman equation (4.2.3). In particular, it shows that the strategy V̂ (t) is
optimal for (4.2.2).
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Theorem 4.2.2. Let T ≥ 0 and assume that there exists uT ∈ C+
b ([0, T ]×E),

which is a solution to (4.2.3). Also, for any t ∈ [0, T ], let the strategy
V̂ (t) := (τ̂i(t), ξ̂i(t))

∞
i=1 ∈ V be given by (4.2.7). Then, we get

uT (t, x) = inf
V ∈V

JT−t(x, V ) = JT−t(x, V̂ (t)), t ∈ [0, T ], x ∈ E. (4.2.8)

Proof. Let us fix some T ≥ 0, t ∈ [0, T ], and x ∈ E. For transparency, we
split the proof into two steps: (1) proof of uT (t, x) = JT−t(x, V̂ (t)); (2) proof
of uT (t, x) ≤ JT−t(x, V ), V ∈ V. Note that these two properties directly
imply (4.2.8). Also, before we proceed, let us mention that the reader may
consult the proof of Theorem 4.3.4, where a similar argument is considered. In
fact, in the proof of Theorem 4.3.4 we do not need to take care of the variable
t, which simplifies some technical arguments.

Step 1. We show that uT (t, x) = JT−t(x, V̂ (t)). In the following, for the
notational convenience, we write V̂ instead of V̂ (t); similar convention is used
for τ̃i(t), ξ̃i(t), τ̂i(t), ξ̂i(t), i = 1, 2, . . .

Using Proposition 4.2.1, we get that τ̃1 is an optimal stopping time for
uT (t, x). Also, we get that the process

exp

(∫ τ̃1∧s

0
f(X1

h)dh+ uT (t+ τ̃1 ∧ s,X1
τ̃1∧s)

)
, s ≥ 0,

is a P
(x,V̂ )

-martingale. Hence, using the strong Markov property, we get

e
uT (t+τ̃1,X2

τ̃1
)

= E
(x,V̂ )

[
e
∫ τ̃2
τ̃1

f(X2
s )ds+1{τ̃2<T−t}MuT (t+τ̃2,X2

τ̃2
)
∣∣∣∣F̂1

τ1

]
P

(x,V̂ )
a.s.

Also, from (4.2.6), for any n = 1, 2, . . ., on the event {τ̃n < T − t}, we get

uT (t+ τ̃n, X
n
τ̃n

) = MuT (t+ τ̃n, X
n
τ̃n

) = c(Xn
τ̃n
, Xn+1

τ̃n
) + uT (t+ τ̃n, X

n+1
τ̃n

).

Thus, recursively we get

uT (t, x)

= lnE
(x,V̂ )

[
e
∫ τ̃1
0 f(Ys)ds+1{τ̃1<T−t}MuT (t+τ̃1,X1

τ̃1
)
]

= lnE
(x,V̂ )

[
e
∫ τ̃1
0 f(Ys)ds+1{τ̃1<T−t}c(X

1
τ̃1
,X2
τ̃1

)+1{τ̃1<T−t}uT (t+τ̃1,X2
τ̃1

)
]

= lnE
(x,V̂ )

[
e

∫ τ̃n
0 f(Ys)ds+

n∑
i=1

1{τ̃i<T−t}c(X
i
τ̃i
,Xi+1
τ̃i

)+1{τ̃n<T−t}uT (t+τ̃n,X
n+1
τ̃n

)
]
.

(4.2.9)
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Combining the boundedness of f and uT with Fatou’s lemma, we get

lnE
(x,V̂ )

[
e
∑∞
i=1 1{τ̃i<T−t}c(X

i
τ̃i
,ξ̃i))
]
≤ uT (t, x) + T‖f‖+ ‖uT ‖ <∞.

Consequently, recalling that c(·, -) ≥ c0 > 0, we get τ̃n → T − t as n → ∞.
Hence, noting that uT (T, x) = 0, x ∈ E, and using the continuity of uT , we
get

uT (t+ τ̃n, Yτ̃n)→ uT (T, YT−t) = 0, n→∞.

Thus, letting n → ∞ in (4.2.9), using Lebesgue’s dominated convergence
theorem, and recalling (4.2.6) and (4.2.7), we get

uT (t, x) = lnE
(x,V̂ )

[
e
∫ T−t
0 f(Ys)ds+

∑∞
i=1 1{τ̃i<T−t}c(X

i
τ̃i
,Xi+1
τ̃i

)
]

= lnE
(x,V̂ )

[
e
∫ T−t
0 f(Ys)ds+

∑∞
i=1 1{τ̃i<T−t}c(X

i
τ̃i
,ξ̃i)
]

= lnE
(x,V̂ )

[
e
∫ T−t
0 f(Ys)ds+

∑∞
i=1 1{τ̂i≤T−t}c(X

i
τ̂i
,ξ̂i)
]
,

which concludes the proof of uT (t, x) = JT−t(x, V̂ ).

Step 2. We show that uT (t, x) ≤ JT−t(x, V ) for any strategy V = (τi, ξi) ∈ V.
Noting that we act in the finite time horizon framework, without any loss
of generality we assume that the impulse times τi take values in the set
[0, T − t) ∪ {∞}; more general strategies do not improve the value of the
problem. More specifically, for a generic V̄ = (τ̄i, ξ̄i) ∈ V we may define
the strategy V := (τi, ξi) ∈ V with τi := τ̄i1{τ̄i<T−t} + ∞1{τ̄i≥T−t} and
ξi := ξ̄i1{τi<T−t} + ξ01{τi≥T−t}, i = 1, 2, . . ., where ξ0 ∈ U is some fixed
point. For these two strategies, we get JT (x, V ) ≤ JT (x, V̄ ), x ∈ E. Also,
since we consider the minimisation problem, we can restrict our attention to
the strategies for which

lnE(x,V )

[
e
∑∞
i=1 1{τi<T−t}c(X

i
τi
,Xi+1
τi

))
]
<∞. (4.2.10)

Using Proposition 4.2.1, we get that the process

e
∫ s∧(T−t)
0 f(X1

h)dh+uT (t+s∧(T−t),Xs∧(T−t)), s ≥ 0,

is a P(x,V )-submartingale. Hence, using the strong Markov property, on the
event {τ1 < T − t}, we get

euT (t+τ1,X2
τ1

) ≤ E(x,V )

[
e
∫ τ2∧(T−t)
τ1∧(T−t)

f(X2
s )ds+1{τ2<T−t}MuT (t+τ2,X2

τ2
)
∣∣∣∣F̂1

τ1

]
P(x,V ) a.s.

90:6669806064



87

Also, from (4.2.3) and (4.2.4), for any n = 1, 2, . . ., on the event {τn < T − t},
we get

uT (t+ τn, X
n
τn) ≤MuT (t+ τn, X

n
τn) ≤ c(Xn

τn , X
n+1
τn ) + uT (t+ τn, X

n+1
τn ).

Thus, recursively we get

uT (t, x)

≤ lnE(x,V )

[
e
∫ τ1∧(T−t)
0 f(Ys)ds+1{τ1<T−t}MuT (t+τ1,X1

τ1
)

]
≤ lnE(x,V )

[
e
∫ τ1∧(T−t)
0 f(Ys)ds+1{τ1<T−t}c(X

1
τ1
,X2
τ1

)+1{τ1<T−t}uT (t+τ1,X2
τ1

)

]
≤ lnE(x,V )

[
e

∫ τn∧(T−t)
0 f(Ys)ds+

n∑
i=1

1{τi<T−t}c(X
i
τi
,Xi+1
τi

)+1{τn<T−t}uT (t+τn,X
n+1
τn )

]
.

Recalling (4.2.10) and the fact that c(·, -) ≥ c0 > 0, we get τn∧(T − t)→ T − t
P(x,V ) a.s. as n→∞. Thus, letting n→∞, as in Step 1, we get

uT (t, x) ≤ lnE(x,V )

[
e

∫ T−t
0 f(Ys)ds+

∞∑
i=1

1{τi<T−t}c(X
i
τi
,Xi+1
τi

)
]

= JT−t(x, V ),

which concludes the proof.

4.2.2 Existence of a solution to the Bellman equation

To show the existence of a solution to the Bellman equation (4.2.3), we use an
iterative procedure. For any T ≥ 0, we define the family (unT )n∈N of functions
unT : [0, T ]× E → R given recursively, for n ∈ N. t ∈ [0, T ], and x ∈ E, by

u0
T (t, x) := lnEx

[
e
∫ T−t
0 f(Xs)ds

]
,

un+1
T (t, x) := inf

τ≤T−t
lnEx

[
e
∫ τ
0 f(Xs)ds+1{τ<T−t}MunT (t+τ,Xτ )

]
. (4.2.11)

We show that unT (x) gives the optimal value of the impulse control problem
with at most n impulses; see Proposition 4.2.4 for details. Before we do this,
let us show some basic properties of the maps unT .

Proposition 4.2.3. For any T ≥ 0 and n ∈ N, let unT be given by (4.2.11).
Then:
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(1) For any T ≥ 0 and n ∈ N, the map (t, x) 7→ unT (t, x) is jointly continuous
and bounded. Also, for any T ≥ 0 and n ∈ N, the stopping time

τn+1
T (t) := inf{s ≥ 0 : uT (t+s,Xs) = MunT (t+s,Xs)}∧(T−t). (4.2.12)

is optimal for un+1
T (t, x).

(2) For any T ≥ 0, n ∈ N, and x ∈ E, the map t 7→ unT (t, x) is decreasing.

Proof. For transparency, we prove the claims point by point.

Proof of (1). We proceed by induction. First, we prove that the map
(t, x) 7→ u0

T (t, x) is jointly continuous. Noting that

| ln z − ln y| ≤ 1

min(z, y)
|z − y|, z, y > 0,

|ez − ey| ≤ emax(z,y)|z − y|, z, y ∈ R,

and using the boundedness of f , for t, s ∈ [0, T ], y ∈ E, and L := e2T‖f‖‖f‖,
we get

|u0
T (t, y)− u0

T (s, y)| ≤ eT‖f‖Ey
∣∣∣e∫ T−t0 f(Xu)du − e

∫ T−s
0 f(Xu)du

∣∣∣ ≤ L|t− s|.
Also, using the Cb-Feller property of X and Proposition 2.1.8, we get that the
map x 7→ u0

T (t, x) is continuous for any fixed t ∈ [0, T ]. Thus, for any sequence
((tk, xk))k∈N converging to (t, x) ∈ [0, T ]× E, we get

|u0
T (tk, xk)− u0

T (t, x)| ≤ |u0
T (tk, xk)− u0

T (t, xk)|+ |u0
T (t, xk)− u0

T (t, x)|
≤ L|tk − t|+ |u0

T (t, xk)− u0
T (t, x)| → 0, k →∞,

which shows the continuity of (t, x) 7→ u0
T (t, x).

Second, we show the continuity of (t, x) 7→ un+1
T (t, x) and the optimal-

ity of τn+1
T (t) for n ∈ N. Let us assume that, for some n ∈ N, we get that

(t, x) 7→ unT (t, x) is continuous. Combining this with the compactness of U ,
we get the joint continuity of the map (t, x) 7→MunT (t, x). Thus, using Theo-
rem 3.3.4, we get joint the continuity of (t, x) 7→ un+1

T (t, x) and the optimality
of τn+1

T (t) for any t ∈ [0, T ], which concludes the proof of this part.

Proof of (2). We proceed by induction. The monotonicity of t 7→ u0
T (t, x)

follows directly from the definition and the non-negativity of f . Let x ∈ E
and assume that, for some n ∈ N, the map t 7→ unT (t, x) is decreasing. Noting
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that t 7→ MunT (t, x) is also decreasing, for any t, h > 0, such that t + h ≤ T ,
we get

un+1
T (t+ h, x) = inf

τ∈T
lnEx

[
e
∫ τ∧(T−t−h)
0 f(Xs)ds+1{τ<T−t−h}MunT (t+h+τ,Xτ )

]
≤ inf

τ∈T
lnEx

[
e
∫ τ∧(T−t)
0 f(Xs)ds+1{τ<T−t}MunT (t+τ,Xτ )

]
= un+1

T (t, x), (4.2.13)

which concludes the proof.

In the next proposition, we link the maps unT from (4.2.11) to the optimal
values of impulse control problems with finitely many impulses. Also, we show
the Lipschitz continuity of t 7→ unT (t, x).

Proposition 4.2.4. For any T ≥ 0 and n ∈ N, let unT be given by (4.2.11).
Then:

(1) For any t ∈ [0, T ] and x ∈ E, we get

unT (t, x) = inf
V ∈Vn

JT−t(x, V ).

(2) For any t, h ∈ [0, T ] and x ∈ E, we get

|unT (t, x)− unT (h, x)| ≤ ‖f‖|t− h|.

Proof. The proof of (1) follows the logic of the proof of Theorem 4.2.2 and is
omitted for brevity.

Now we prove (2). Without any loss of generality, we assume h > t. Let
ε > 0 and V̂ h

ε = (τ̂i, ξ̂i)
∞
i=1 ∈ Vn be an ε-optimal strategy for inf

V ∈Vn
JT−h(x, V ).

For any i = 1, 2, . . ., let us define

τ̃i := τ̂i1{τ̂i≤T−h} +∞1{τ̂i>T−h},

ξ̃i := ξ̂i1{τ̂i≤T−h} + ξ01{τ̂i>T−h},

where ξ0 ∈ U is some fixed point. Then, we get JT−h(x, V̂ h
ε ) = JT−h(x, Ṽ h

ε ),
where the strategy Ṽ h

ε ∈ Vn is given by Ṽ h
ε := (τ̃i, ξ̃i)

∞
i=1. Note that Ṽ h

ε is

a simple modification of V̂ h
ε , which excludes impulses after the time T − h.
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Next, recalling point (1) of this proposition and the non-negativity of f , we
get

0 ≤ unT (t, x)− unT (h, x)

≤ JT−t(x, Ṽ h
ε )− JT−h(x, Ṽ h

ε ) + ε

= lnE
(x,Ṽ hε )

[
e

∫ T−t
0 f(Ys)ds+

∑∞
i=1 1{τ̃i≤T−t}c(Yτ̃−

i
,ξ̃i)
]

− lnE
(x,Ṽ hε )

[
e

∫ T−h
0 f(Ys)ds+

∑∞
i=1 1{τ̃i≤T−h}c(Yτ̃−

i
,ξ̃i)
]

+ ε

≤ lnE
(x,Ṽ hε )

[
e

∫ T−h
0 f(Ys)ds+

∑∞
i=1 1{τ̃i≤T−h}c(Yτ̃−

i
,ξ̃i)
]

+ (h− t)‖f‖

− lnE
(x,Ṽ hε )

[
e

∫ T−h
0 f(Ys)ds+

∑∞
i=1 1{τ̃i≤T−h}c(Yτ̃−

i
,ξ̃i)
]

+ ε

= (h− t)‖f‖+ ε. (4.2.14)

Recalling that ε > 0 was arbitrary, we conclude the proof.

Using Proposition 4.2.4 and noting that Vn ⊂ Vn+1, n ∈ N, for any T ≥ 0,
n ∈ N, t ∈ [0, T ], and x ∈ E, we get un+1

T (t, x) ≤ unT (t, x). Thus, the map

uT (t, x) := lim
n→∞

unT (t, x), T ≥ 0, t ∈ [0, T ], x ∈ E (4.2.15)

is well defined. In Theorem 4.2.5 we show that uT is a solution to (4.2.3). Note
that this, combined with Theorem 4.2.2, shows the existence of an optimal
strategy for (4.2.2).

Theorem 4.2.5. For any T ≥ 0, let the map uT be given by (4.2.15). Then,
we get that (t, x) 7→ uT (t, x) is jointly continuous, bounded, non-negative, and
satisfies (4.2.3).

Proof. Let us fix T ≥ 0. For any t ∈ [0, T ] and x ∈ E, recalling that the map
n 7→ un+1

T (t, x) is decreasing, we get

MuT (t, x) = M lim
n→∞

unT (t, x) = M inf
n∈N

unT (t, x)

= inf
n∈N

MunT (t, x) = lim
n→∞

MunT (t, x).

Next, recalling Proposition 4.2.4 and noting that the cost of the no impulse
strategy is bounded from above by T‖f‖, for any n ∈ N, we get

‖MunT ‖ ≤ ‖c‖+ ‖unT ‖ ≤ ‖c‖+ T‖f‖. (4.2.16)
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Also, recalling the non-negativity of c and f , and using Proposition 4.2.4, we
get unT (t, x) ≥ 0, n ∈ N, t ∈ [0, T ], x ∈ E. Thus, we get MuT (t, x) ≥ 0,
t ∈ [0, T ], x ∈ E. Also, for any t ∈ [0, T ] and x ∈ E, recalling that the map
n 7→ MunT (t, x) is decreasing and using Lebesgue’s dominated convergence
theorem, we get

uT (t, x) = lim
n→∞

unT (t, x)

= inf
τ≤T−t

inf
n∈N

lnEx
[
e
∫ τ
0 f(Xs)ds+1{τ<T−t}Mun−1

T (t+τ,Xτ )
]

= inf
τ≤T−t

lnEx
[
e
∫ τ
0 f(Xs)ds+1{τ<T−t}MuT (t+τ,Xτ )

]
. (4.2.17)

In particular, we get that uT is a solution to (4.2.3). Also, recalling Proposi-
tion 4.2.4, for any t, s ≥ 0 and ξ ∈ E, we get

|uT (t, ξ)− uT (s, ξ)| = lim
n→∞

|unT (t, ξ)− unT (s, ξ)| ≤ |t− s|‖f‖, ξ ∈ U,

thus, for any t, s ≥ 0 and x, y ∈ E, we get

|MuT (t, x)−MuT (s, y)| ≤ sup
ξ∈U
|c(x, ξ)− c(y, ξ)|+ sup

ξ∈U
|uT (t, ξ)− uT (s, ξ)|

≤ sup
ξ∈U
|c(x, ξ)− c(y, ξ)|+ |t− s|‖f‖.

Consequently, we get MuT ∈ C+
b ([0, T ]× E). Thus, using (4.2.17) and Theo-

rem 3.3.4, we get uT ∈ C+
b ([0, T ]× E), which concludes the proof.

Based on the construction of the map uT , we may link (4.2.2) to optimi-
sation problems with finitely many impulses. More specifically, we get that
infV ∈V JT (x, V ) could be approximated by the optimal value functions for
the impulse control strategies from Vn. This is summarised in the following
corollary.

Corollary 4.2.6. For any T ≥ 0, let the map JT be given by (4.2.1). Then,
for any x ∈ E, we get

inf
V ∈V

JT (x, V ) = lim
n→∞

inf
V ∈Vn

JT (x, V ).

Proof. Recall the maps unT and uT given by (4.2.11) and (4.2.15), respec-
tively. Combining Theorem 4.2.2, Theorem 4.2.5, and Proposition 4.2.4, for
any T ≥ 0 and x ∈ E, we get

inf
V ∈V

JT (x, V ) = uT (0, x) = lim
n→∞

unT (0, x) = lim
n→∞

inf
V ∈Vn

JT (x, V ),

which concludes the proof.
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4.2.3 Approximation of finite time horizon impulse control

In this section, we present approximation results related to the finite time
horizon impulse control problems. First, we show that, for any n ∈ N, we may
approximate infV ∈Vn JT (x, V ), T ≥ 0, x ∈ E, by the optimal values of the
corresponding impulse control problems with dyadic strategies. To do this, by
analogy to (4.2.11), for any T ≥ 0 and m ∈ N, we recursively define the family
of maps (un,mT )n∈N given, for any n ∈ N, t ∈ [0, T ], and x ∈ E, by

u0,m
T (t, x) := lnEx

[
e
∫ T−t
0 f(Xs)ds

]
,

un+1,m
T (t, x) := inf

τ≤T−t
τ∈T m

lnEx
[
e
∫ τ
0 f(Xs)ds+1{τ<T−t}Mun,mT (t+τ,Xτ )

]
. (4.2.18)

In the following, we link un,mT to infV ∈Vmn JT (x, V ). Also, we show un,mT → unT
as m→∞.

We start with linking un,mT to the optimal value of the impulse control
problem with at most n impulses and impulse times from T m. The proof of
Proposition 4.2.7 follows the lines of the proof of Theorem 4.2.2 and is omitted
for brevity.

Proposition 4.2.7. For any n,m ∈ N, and T ≥ 0, let the map un,mT be given
by (4.2.18). Then, we get

un,mT (t, x) = inf
V ∈Vmn

JT−t(x, V ), t ∈ [0, T ], x ∈ E.

Now, we show that the impulse control problem with finitely many impulses
may be approximated by the optimization problems on the dyadic time-grid.

Proposition 4.2.8. Let T ≥ 0 and n ∈ N. Also, let the maps unT and
un,mT , m ∈ N, be given by (4.2.11) and (4.2.18), respectively. Then, we get
un,mT (t, x) → unT (t, x) as m → ∞ uniformly on compacts, i.e. uniformly in
(t, x) ∈ [0, T ]× Γ, where Γ ⊂ E is a compact set.

Proof. Let us fix T ≥ 0 and proceed by induction with respect to n. The
claim for n = 0 is straightforward as un,mT ≡ unT for any m ∈ N. Let n ∈ N and
assume that un,mT (t, x)→ unT (t, x) as m→∞ uniformly in (t, x) ∈ [0, T ]×Γ for

any compact set Γ ⊂ E. We show that un+1,m
T (t, x) → un+1

T (t, x) as m → ∞
uniformly in (t, x) ∈ [0, T ]× Γ for any compact set Γ ⊂ E.

Let us fix some compact set Γ ⊂ E. Also, to simplify the notation, for any
m ∈ N, t ∈ [0, T ], and x ∈ E, we set

Un+1
T (t, x) := exp

(
un+1
T (t, x)

)
, Un+1,m

T (t, x) := exp
(
un+1,m
T (t, x)

)
.
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Recalling the non-negativity of f and c, for any m ∈ N, t ∈ [0, T ], and x ∈ E,

we get min
(
Un+1
T (t, x), Un+1,m

T (t, x)
)
≥ 1. Thus, using the inequality

| ln y − ln z| ≤ 1

min(y, z)
|y − z|, y, z > 0,

for any m ∈ N, t ∈ [0, T ], and x ∈ E, we get

0 ≤ un+1,m
T (t, x)− un+1

T (t, x) ≤ Un+1,m
T (t, x)− Un+1

T (t, x). (4.2.19)

Thus, it is enough to show that Un+1,m
T (t, x) → Un+1

T (t, x) as m → ∞ uni-
formly in (t, x) ∈ [0, T ] × Γ. Before we do that, we introduce some auxiliary
notation and results.

Consider any t ∈ [0, T ], x ∈ Γ, and ε > 0. Let τ̂ (T,t,x) ≤ T − t be an
optimal stopping time for Un+1

T (t, x); using Proposition 4.2.3 we know that
τ̂ (T,t,x) exists. For any m ∈ N, we define T m approximation of τ̂ (T,t,x) by

τ̂ (T,t,x)
m :=

b(T−t)2mc∑
j=1

1{ j−1
2m

<τ̂ (T,t,x)≤ j
2m }

j

2m

 ∧ (T − t),

where bac := sup{k ∈ Z : k ≤ a} denotes the integer part of a ∈ R. Note that

in the following, for brevity, we write τ̂ and τ̂m instead of τ̂ (T,t,x) and τ̂
(T,t,x)
m .

Also, for m ∈ N, s, s′ ∈ [0, T ], and y, z ∈ E, we set

ZnT (τ̂) := exp
(∫ τ̂

0 f(Xs)ds+ 1{τ̂<T−t}MunT (t+ τ̂ , Xτ̂ )
)
,

An,mT (s, y) := |un,mT (s, y)− unT (s, y)|,
Bn,m
T (s, s′, y, z) :=

∣∣Mun,mT (s, y)−MunT (s′, z)
∣∣ ,

CnT (s, s′, y, z) := sup
ξ∈U
|unT (s, ξ)− unT (s′, ξ)|+ sup

ξ∈U
|c(y, ξ)− c(z, ξ)|.

Note that, by Proposition 4.2.3, the function (s, s′, y, z) 7→ CnT (s, s′, y, z) is
jointly continuous and bounded. Moreover, by the induction assumption, we
get that An,mT (s, y) → 0 as m → ∞ uniformly in (s, y) ∈ [0, T ] × Γ̂ where

Γ̂ ⊂ E is a compact set. Also, for any m ∈ N, s, s′ ∈ [0, T ], and y, z ∈ E, we
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get

Bn,m
T (s, s′, y, z) ≤ sup

ξ∈U
|un,mT (s, ξ)− unT (s′, ξ)|+ sup

ξ∈U
|c(y, ξ)− c(z, ξ)|

≤ sup
ξ∈U
|un,mT (s, ξ)− unT (s, ξ)|+ sup

ξ∈U
|unT (s, ξ)− unT (s′, ξ)|

+ sup
ξ∈U
|c(y, ξ)− c(z, ξ)|

≤ sup
s′′∈[0,T ]

sup
ξ∈U

An,mT (s′′, ξ) + CnT (s, s′, y, z). (4.2.20)

Next, using (B4), we can find R > 0 such that

sup
x∈Γ

Px

[
sup
s∈[0,T ]

ρ(Xs, x) > R

]
≤ ε. (4.2.21)

Let B := {x ∈ E : ρ(x,Γ) ≤ R + 1}. Using the induction assumption and the
compactness of U , we may find m0 ∈ N such that, for any m ≥ m0, we get

sup
s∈[0,T ]

sup
y∈B∪U

An,mT (s, y) ≤ ε.

In particular, recalling (4.2.20), for m ≥ m0, s, s′ ∈ [0, T ], and y, z ∈ E, we
get

Bn,m
T (s, s′, y, z) ≤ ε+ CnT (s, s′, y, z). (4.2.22)

Also, recalling the identity δm = 2−m, m ∈ N, and noting that CnT is uniformly
continuous on [0, T ]× [0, T ]× B × B and CnT (s, s, y, y) = 0, s ∈ [0, T ], y ∈ E,
we may find r1 > 0 and m1 ∈ N such that, for any m ≥ m1, we get

sup
s,s′∈[0,T ]
|s−s′|≤δm

sup
y,z∈B

ρ(y,z)≤r1

CnT (s, s′, y, z) ≤ ε. (4.2.23)

Let r := min(r1,
1
2). Using (B4), we may find m2 ∈ N such that, for any

m ≥ m2, we get

sup
x∈B

Px

[
sup

s∈[0,δm]
ρ(Xs, x) ≥ r

]
≤ ε and ‖f‖δm ≤ ε. (4.2.24)

Finally, it is useful to note that we get the inequalities 0 ≤ ukT (t, x) ≤ T‖f‖
and 0 ≤ uk,mT (t, x) ≤ T‖f‖, k,m ∈ N, t ∈ [0, T ], x ∈ E; these follow from
Proposition 4.2.4, Proposition 4.2.7, the non-negativity of f and c, and the
fact that the cost of no impulse strategy is bounded from above by T‖f‖.
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Now we return to the proof of Un+1,m
T (t, x) → Un+1

T (t, x) as m → ∞
uniformly in t ∈ [0, T ] and x ∈ Γ. Recalling the boundedness of f , using the
inequality 0 ≤ τ̂m − τ̂ ≤ δm, and the fact that {τ̂m < T − t} ⊂ {τ̂ < T − t},
for any t ∈ [0, T ] and x ∈ Γ, we get

0 ≤ Un+1,m
T (t, x)− Un+1

T (t, x)

≤ Ex
[
e
∫ τ̂m
0 f(Xs)ds+1{τ̂m<T−t}Mun,mT (t+τ̂m,Xτ̂m )

]
− Ex [ZnT (τ̂)]

≤ e‖f‖δmEx
[
ZnT (τ̂)eB

n,m
T (t+τ̂m,t+τ̂ ,Xτ̂m ,Xτ̂ )

]
− Ex [ZnT (τ̂)] . (4.2.25)

Noting that ZnT (τ̂) ≤ e‖c‖+2T‖f‖ and ‖Bn,m
T ‖ ≤ 2‖c‖+ 2T‖f‖, m ∈ N, and us-

ing (4.2.21) and (4.2.22), for any t ∈ [0, T ], x ∈ Γ, and m ≥ max(m0,m1,m2),
we get

Ex
[
ZnT (τ̂)eB

n,m
T (t+τ̂m,t+τ̂ ,Xτ̂m ,Xτ̂ )

]
= Ex

[
(1{ρ(Xτ̂ ,X0)≤R} + 1{ρ(Xτ̂ ,X0)>R})Z

n
T (τ̂)eB

n,m
T (t+τ̂m,t+τ̂ ,Xτ̂m ,Xτ̂ )

]
≤ eεEx

[
1{ρ(Xτ̂ ,X0)≤R}Z

n
T (τ̂)eC

n
T (t+τ̂m,t+τ̂ ,Xτ̂m ,Xτ̂ )

]
+ εK1, (4.2.26)

where K1 := e3‖c‖+4T‖f‖. Let D := { sup
s∈[0,δm]

ρ(Xs, X0) ≤ r}. Using (4.2.23)

and (4.2.24), on the event {ρ(Xτ̂ , X0) ≤ R}, we get

EXτ̂

[
1D exp

(
sup

|s−s′|≤δm
sup

s′′∈[0,δm]
Cn(s, s′, Xs′′ , X0)

)]
≤ eε,

EXτ̂

[
1Dc exp

(
sup

|s−s′|≤δm
sup

s′′∈[0,δm]
Cn(s, s′, Xs′′ , X0)

)]
≤ εK2,

where K2 := e2‖c‖+2T‖f‖. Thus, using the strong Markov property, for any
t ∈ [0, T ] and x ∈ Γ, we get

Ex
[
1{ρ(Xτ̂ ,X0)≤R}Z

n
T (τ̂)eC

n
T (t+τ̂m,t+τ̂ ,Xτ̂m ,Xτ̂ )

]
≤ Ex

[
1{ρ(Xτ̂ ,X0)≤R}Z

n
T (τ̂)EXτ̂

[
esup|s−s′|≤δm sups′′∈[0,δm] C

n(s,s′,Xs′′ ,X0)
]]

≤ Ex
[
1{ρ(Xτ̂ ,X0)≤R}Z

n
T (τ̂)(eε + εK2)

]
≤ eεEx [ZnT (τ̂)] + εK3,

where K3 := K2e
‖c‖+2T‖f‖. Hence, recalling (4.2.26), we get

Ex
[
ZnT (τ̂)eB

n,m
T (t+τ̂m,t+τ̂ ,Xτ̂m ,Xτ̂ )

]
≤ e2εEx [ZnT (τ̂)] + εeεK3 + εK1. (4.2.27)
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Recalling that ‖f‖δm ≤ ε and combining (4.2.27) with (4.2.25), for any
t ∈ [0, T ] and x ∈ Γ, we get

0 ≤ Un+1,m
T (t, x)− Un+1

T (t, x) ≤
(
e3ε − 1

)
Ex [ZnT (τ̂)] + εe2εK3 + εeεK1

≤
(
e3ε − 1

)
e2T‖f‖+‖c‖ + εe2εK3 + εeεK1.

Noting that the upper bound is uniform in t ∈ [0, T ] and x ∈ Γ, and recall-
ing that ε > 0 was arbitrary, we get Un+1,m

T (t, x) → Un+1
T (t, x) as m → ∞

uniformly on (t, x) ∈ [0, T ] × Γ. Thus, recalling (4.2.19), we conclude the
proof.

Using Proposition 4.2.8, we may generalise Corollary 4.2.6 to the dyadic
framework. More specifically, we get that the optimal value of (4.2.2) could
be approximated using strategies from Vmn ; see the following proposition for
details.

Proposition 4.2.9. For any T ≥ 0, let the map JT be given by (4.2.1). Then,
for any x ∈ E, we get

lim
n→∞

lim
m→∞

inf
V ∈Vmn

JT (x, V ) = inf
V ∈V

JT (x, V ). (4.2.28)

Proof. For any n ∈ N, using Proposition 4.2.7, Proposition 4.2.8, and Propo-
sition 4.2.4, we get

lim
m→∞

inf
V ∈Vmn

JT (x, V ) = lim
m→∞

un,mT (0, x) = unT (0, x) = inf
V ∈Vn

JT (x, V ).

Letting n→∞ and recalling Corollary 4.2.6, we conclude the proof.

4.3 Long-run impulse control

In this section, we consider the long-run risk-sensitive impulse control problem.
Our primary goal is to characterise the optimal value and an optimal strategy
for

inf
V ∈V

J(x, V ), x ∈ E, (4.3.1)

where, for any x ∈ E and V ∈ V, the functional J is given by

J(x, V ) := lim sup
T→∞

1

T
lnE(x,V )

[
e

∫ T
0 f(Ys)ds+

∑∞
i=1 1{τi≤T}c(Yτ−

i
,ξi)
]
. (4.3.2)

Assuming (B1)–(B5) we construct a solution to the associated optimality equa-
tion and solve the problem.
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4.3.1 Verification theorem

To solve (4.3.1), we show the existence of a function u ∈ Cb(E) and a constant
λ ∈ R that satisfy the impulse control Bellman equation

u(x) = inf
τ∈Tx,b

lnEx
[
exp

(∫ τ

0
(f(Xs)− λ)ds+Mu(Xτ )

)]
, x ∈ E, (4.3.3)

where, with a slight abuse of notation, the operator M : Cb(E) → Cb(E) is
defined as

Mh(x) := inf
ξ∈U

(c(x, ξ) + h(ξ)) , h ∈ Cb(E), x ∈ E. (4.3.4)

With the help of a solution to (4.3.3) we construct an optimal strategy and
find the optimal value of (4.3.1). More specifically, we show that, regardless
of the initial point x ∈ E, we get λ = infV ∈V J(x, V ). Also, we show that
optimal impulse times for (4.3.1) are linked to optimal stopping times for u
and optimal after-shift states are given by the minimisers for the operator M ;
see Theorem 4.3.4 for details.

Before we proceed, we show a simple lemma stating an upper bound for the
constant λ from (4.3.3). Namely, we show that λ ≤ r(f), where r(f) denotes
the type of the semigroup given by (4.1.8).

Lemma 4.3.1. Let u ∈ Cb(E) and λ ∈ R be a solution to (4.3.3). Then, we
get λ ≤ r(f), where r(f) is given by (4.1.8).

Proof. Using the continuity of u and the compactness of U , we get ‖Mu‖ <∞.
Thus, for any x ∈ E and t > 0, we get

u(x) ≤ lnEx
[
e
∫ t
0 (f(Xs)−λ)ds+Mu(Xt)

]
≤ ln sup

y∈E
Ey
[
e
∫ t
0 (f(Xs)−λ)ds

]
+ ‖Mu‖.

Hence, dividing by t, letting t → ∞, and using (A.4.2), we get 0 ≤ r(f − λ)
and consequently λ ≤ r(f).

Next, we focus on the optimal stopping problem linked to (4.3.3). Note
that, in principle, the term f(·) − λ could be non-positive, and the results
from Chapter 3 cannot be directly applied. Thus, to embed (4.3.3) into the
framework of Chapter 3, we use a change of measure transformation associated
with a solution to the Multiplicative Poisson Equation. More specifically, with
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a solution to (4.1.7) we associate a family of probability measures (Qx), x ∈ E,
given by the Radon-Nikodym derivative

dQx

∣∣
Ft := Yt(x)dPx

∣∣
Ft , x ∈ E, t ≥ 0,

where Yt(x) := e−v(x)e
∫ t
0 (f(Xs)−r(f))ds+v(Xt), t ≥ 0, x ∈ E. In Section A.4,

we show that the (uncontrolled) process X is Markov under (Qx); see Theo-
rem A.4.6. Also, using Proposition A.4.4, for any x ∈ E, λ ∈ R, G ∈ Cb(E),
and τ ∈ Tx,b, we get

Ex
[
e
∫ τ
0 (f(Xs)−λ)ds+G(Xτ )

]
= ev(x) EQ

x

[
e(r(f)−λ)τ+G(Xτ )−v(Xτ )

]
. (4.3.5)

Based on this identity, we may transform the optimal stopping problem related
to (4.3.3) into the framework considered in Chapter 3. Namely, while (f(·)−λ)
on the left-hand side of (4.3.5) could be sign-changing, using Lemma 4.3.1, we
get that the term r(f) − λ at the right-hand side is non-negative. In fact, in
many cases, this constant is positive, and the assumptions from Chapter 3 are
satisfied.

Change of measure transformation associated with (4.1.7) is used in Propo-
sition 4.3.2 below, where we introduce a martingale associated with a solution
to (4.3.3). Note that in the proposition we assume that λ < r(f). The remain-
ing degenerate case λ = r(f) needs a special argument; see Theorem 4.3.9 for
details.

Proposition 4.3.2. Let u ∈ Cb(E) and λ < r(f) be a solution to (4.3.3).
Also, let

τ̂ := inf{t ≥ 0 : u(Xt) = Mu(Xt)}. (4.3.6)

Then, for any x ∈ E, the process zu(t) := e
∫ t
0 (f(Xs)−λ)ds+u(Xt), t ≥ 0, is a

Px-submartingale and the process (zu(τ̂ ∧ t)), t ≥ 0, is a Px-martingale.

Proof. The proof is based on the change of measure technique related to
the Multiplicative Poisson Equation; see Section A.4 for details. Recalling
v from (B5b), we set

w(x) := u(x)− v(x) + ‖Mu‖+ ‖v‖, x ∈ E,
G(x) := Mu(x)− v(x) + ‖Mu‖+ ‖v‖, x ∈ E,

d := r(f)− λ.

Thus, recalling the family of measures (Qx) from (A.4.7), and using (4.3.3)
and (A.4.8), we get

ew(x) = inf
τ∈Tx,b

EQ
x

[
edτ+G(Xτ )

]
, x ∈ E. (4.3.7)
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Also, recalling (A.4.7), note that if for some x ∈ E and T ≥ 0, we get
Px[τ ≤ T ] = 0, then we also get

Qx[τ ≤ T ] ≤ eT‖f−r(f)‖+2‖v‖Px[τ ≤ T ] = 0. (4.3.8)

Thus, denoting by T Q
x,b the family of Qx a.s. bounded stopping times, we get

Tx,b = T Q
x,b, x ∈ E, and consequently (4.3.7) could be rewritten as

ew(x) = inf
τ∈T Q

x,b

EQ
x

[
edτ+G(Xτ )

]
, x ∈ E. (4.3.9)

Also, noting that d > 0 and G ∈ C+
b (E), and using Theorem A.4.6, we get

that Assumptions (A1)–(A4) from Section 3.1 are satisfied for the process
((Xt)t≥0, (Qx)x∈E)). Thus, using Theorem 3.4.11, in (4.3.9) we may replace

the family of Qx a.s. bounded stopping times T Q
x,b with the family of Qx a.s.

finite stopping times T Q
x , i.e. we get

ew(x) = inf
τ∈T Q

x

EQ
x

[
edτ+G(Xτ )

]
, x ∈ E.

Also, we get that the stopping time

τ̂ := inf{t ≥ 0 : w(Xt) = G(Xt)} ∈ T Q
x

is optimal for w. Moreover, recalling the definitions of w and G, we get

τ̂ = inf{t ≥ 0 : u(Xt) = Mu(Xt)}.

Next, let us define zw(t) := etd+w(Xt), t ≥ 0. Using Theorem 3.4.11, we get
that, for any x ∈ E, the process (zw(t)), t ≥ 0, is a Qx-submartingale and the
process (zw(τ̂ ∧ t)), t ≥ 0, is a Qx-martingale. Thus, using Proposition A.4.4,
we get that (zw(t)), t ≥ 0, is a Px-submartingale and (zw(τ̂ ∧ t)), t ≥ 0, is a
Px-martingale, which concludes the proof.

Remark 4.3.3. Based on Proposition 4.3.2 one may ask if τ̂ is an optimal
stopping time for u(x), x ∈ E. In particular, we would need to show that
τ̂ ∈ Tx,b. From Theorem 3.4.11, we get that Qx[τ̂ <∞] = 1, x ∈ E. However,
the measures Qx and Px need not to be equivalent and it is not clear if we
even have τ̂ ∈ Tx. Consequently, τ̂ may not be an optimal stopping time for
u. Still, note that the process (zu(τ̂ ∧ t)), t ≥ 0, is a Px-martingale and this
is one of the main building blocks of the construction of the impulse control
strategy associated with (4.3.3); see Theorem 4.3.4 for details. ♦
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Now we state the verification theorem linking a solution to (4.3.3) with an
optimal strategy for (4.3.1). Note that the existence of a solution to (4.3.3) is
proved in Theorem 4.3.8.

Let us fix u ∈ Cb(E) and λ ∈ R solving (4.3.3). Let V̂ := (τ̂i, ξ̂i)
∞
i=1 be a

strategy given recursively byτ̂i := inf{t ≥ τ̂i−1 : u(Xi
t) = Mu(Xi

t)},
ξ̂i := arg min

ξ∈U

[
c(Xi

τ̂i
, ξ) + u(ξ)

]
1{τ̂i<∞} + ξ01{τ̂i=∞},

(4.3.10)

for i = 1, 2, . . ., where τ̂0 := 0 and ξ0 ∈ U is some fixed point. An intuitive
interpretation of the strategy V̂ is as follows: every time the controlled process
enters the set {y ∈ E : u(y) = Mu(y)}, we apply an impulse and shift the
process to a minimiser of Mu(y). In Theorem 4.3.4 we show that V̂ is an
optimal strategy for (4.3.1).

Theorem 4.3.4. Let u ∈ Cb(E) and λ < r(f) be a solution to (4.3.3). Also,
let the strategy V̂ be given by (4.3.10). Then, we get

λ = inf
V ∈V

J(x, V ) = J(x, V̂ ), x ∈ E. (4.3.11)

Proof. Let us fix x ∈ E. As in Theorem 4.2.2, we split the proof into two
steps: (1) proof of λ = J(x, V̂ ); (2) proof of λ ≤ J(x, V ), V ∈ V. Note that
these two properties directly imply (4.3.11).

Step 1. We show that λ = J(x, V̂ ). Using Proposition 4.3.2 and a suitable

embedding, we get that the process e
∫ τ̂1∧T
0 (f(X1

s )−λ)ds+u(X1
τ̂1∧T

)
, T ≥ 0, is a

P
(x,V̂ )

-martingale; see the discussion in Section 2.2 for details. Also, note

that, on the event {τ̂1 <∞}, we get ξ̂1 = X2
τ̂1

and

u(X1
τ̂1

) = Mu(X1
τ̂1

) = c(X1
τ̂1
, X2

τ̂1
) + u(X2

τ̂1
).

Thus, for any T ≥ 0, we get

eu(x) = E
(x,V̂ )

[
e
∫ τ̂1∧T
0 (f(Ys)−λ)ds+u(X1

τ̂1∧T
)
]

= E
(x,V̂ )

[
e
∫ τ̂1∧T
0 (f(Ys)−λ)ds+1{τ̂1≤T}c(X

1
τ̂1
,X2
τ̂1

)+1{τ̂1>T}u(X1
T )×

× e
1{τ̂1≤T}u(X2

τ̂1
)
]
. (4.3.12)
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From the martingale property, for any T ≥ 0, on {τ̂1 ≤ T}, we get

e
u(X2

τ̂1
)

= E
(x,V̂ )

[
e
∫ τ̂2∧T
τ̂1∧T

(f(X2
s )−λ)ds+u(X2

τ̂2∧T
)
∣∣∣∣F̂1

τ̂1∧T

]
P

(x,V̂ )
a.s.

Combining this identity with (4.3.12), we get

eu(x) = E
(x,V̂ )

[
e
∫ τ̂2∧T
0 (f(Ys)−λ)ds+

∑2
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)×

× e1{τ̂1>T}u(X1
T )+1{τ̂1≤T<τ̂2}u(X2

T )+1{τ̂2≤T}u(X2
τ̂2

)
]
.

Thus, acting recursively, we get

eu(x) = E
(x,V̂ )

[
e
∫ τ̂n∧T
0 (f(Ys)−λ)ds+

∑n
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)×

× e
∑n−1
i=0 1{τ̂i≤T<τ̂i+1}u(Xi+1

T )+1{τ̂n≤T}u(Xn
τ̂n

)
]
. (4.3.13)

Using Fatou’s lemma and the boundedness of f and u, we get

eu(x) ≥E
(x,V̂ )

[
lim inf
n→∞

e
∫ τ̂n∧T
0 (f(Ys)−λ)ds+

∑n
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)×

× e
∑n−1
i=0 1{τ̂i≤T<τ̂i+1}u(Xi+1

T )+1{τ̂n≤T}u(Xn
τ̂n

)
]

≥E
(x,V̂ )

[
e
T (−‖f‖−|λ|)+

∑∞
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)−‖u‖
]
.

Thus, noting that eu(x) <∞, we get

E
(x,V̂ )

[
e
∑∞
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)
]
<∞,

for any T ≥ 0. Thus, recalling that, by (B3), we get c(·, -) ≥ c0 > 0, we
conclude that τ̂n ↑ ∞. Consequently, letting n → ∞ in (4.3.13) and using
Lebesgue’s dominated convergence theorem, we get

eu(x) = E
(x,V̂ )

[
e
∫ T
0 (f(Ys)−λ)ds+

∑∞
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)×

× e
∑∞
i=0 1{τ̂i≤T<τ̂i+1}u(Xi+1

T )
]

(4.3.14)
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Taking the logarithm of both sides, dividing by T , and recalling the bounded-
ness of u, we get

λ = lim sup
T→∞

1

T
lnE

(x,V̂ )

[
e
∫ T
0 f(Ys)ds+

∑∞
i=1 1{τ̂i≤T}c(X

i
τ̂i
,Xi+1
τ̂i

)
]

= lim sup
T→∞

1

T
lnE

(x,V̂ )

[
e

∫ T
0 f(Ys)ds+

∑∞
i=1 1{τ̂i≤T}c(Yτ̂−

i
,ξ̂i)
]
,

which concludes the proof of λ = J(x, V̂ ), x ∈ E.

Step 2. We show that, for any strategy V = (τi, ξi)
∞
i=1 ∈ V, we get λ ≤ J(x, V ).

Since we consider the minimisation problem, we can restrict our attention to
the strategies for which

E(x,V )

[
e
∑∞
i=1 1{τi≤T}c(X

i
τi
,ξi)
]
<∞, T ≥ 0. (4.3.15)

Using Proposition 4.3.2 and Doob’s optional stopping theorem, we get that the

process e
∫ τ1∧T
0 (f(X1

s )−λ)ds+u(X1
τ1∧T

)
, T ≥ 0, is a P(x,V )-submartingale. Thus, for

any T ≥ 0, we get

eu(x) ≤ E(x,V )

[
e
∫ τ1∧T
0 (f(Ys)−λ)ds+u(X1

τ1∧T
)
]
.

Using the fact that u(Xn
τn) ≤Mu(Xn

τn) ≤ c(Xn
τn , ξn) + u(ξn) on {τn <∞}, as

in (4.3.13), we get

eu(x) ≤ E(x,V )

[
e
∫ τn∧T
0 (f(Ys)−λ)ds+

∑n
i=1 1{τi≤T}c(X

i
τi
,Xi+1
τi

)×

× e
∑n−1
i=0 1{τi≤T<τi+1}u(Xi+1

T )+1{τn≤T}u(Xn
τn )
]
.

Recalling (4.3.15) and letting n→∞, we get

eu(x) ≤ E(x,V )

[
e
∫ T
0 (f(Ys)−λ)ds+

∑∞
i=1 1{τi≤T}c(X

i
τi
,Xi+1
τi

)+‖u‖
]
.

As in Step 1, we get λ ≤ J(x, V ), x ∈ E, which concludes the proof.

4.3.2 Existence of a solution to the Bellman equation

The solution to (4.3.3) is constructed using a dyadic approximation argument.
Recall the time-step δm = 1

2m , m ∈ N, and the corresponding family of dyadic
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stopping times T mx,b, m ∈ N, x ∈ E, introduced in Section 2.1. For any m ∈ N,
the dyadic version of the Bellman equation (4.3.3) is given by

um(x) = inf
τ∈T mx,b

lnEx
[
exp

(∫ τ

0
(f(Xs)− λm)ds+Mum(xτ )

)]
, x ∈ E,

(4.3.16)
where M is defined in (4.3.4), and we want to find um ∈ Cb(E) and λm ∈ R
satisfying (4.3.16). In fact, due to the dyadic nature of the problem, one could
consider the associated one-step equation given by

eum(x) = min
(
eMum(x),Ex

[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

])
, x ∈ E; (4.3.17)

see Proposition 4.3.6 for details. In the following theorem we show that a
solution to (4.3.17) exists and solves a dyadic version of the impulse control
problem given by

inf
V ∈Vm

J(x, V ), x ∈ E. (4.3.18)

Theorem 4.3.5. For any m ∈ N, there exists a function um ∈ Cb(E) and a
constant λm ∈ R satisfying (4.3.17). Moreover, we get

λm = inf
V ∈Vm

J(x, V ), x ∈ E.

Proof. Using Proposition A.3.3, we get that there exists a function um ∈ Cb(E)
and a constant λm ∈ R satisfying

eum(x) = min

(
inf
ξ∈U

ec(x,ξ) Eξ
[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

]
,

Ex
[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

])
. (4.3.19)

Let us show that

inf
ξ∈U

ec(x,ξ) Eξ
[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

]
= eMum(x), (4.3.20)

which directly implies that the pair (um, λm) satisfy (4.3.17). For brevity, we
define

F (x) := Ex
[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

]
, x ∈ E.

From (4.3.19), we get F (x) ≥ eum(x), x ∈ E. Thus, for any x ∈ E, we get

inf
ξ∈U

ec(x,ξ)F (ξ) ≥ inf
ξ∈U

ec(x,ξ)eum(ξ) = eMum(x). (4.3.21)
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On the other hand, using (4.1.2) and (4.3.19), for any x ∈ E, we get

inf
ξ∈U

ec(x,ξ)F (ξ) = inf
ξ∈U

ec(x,ξ)F (ξ) ∧ inf
ζ∈U

ec(x,ζ)F (ζ)

≤ inf
ξ∈U

(
ec(x,ξ)F (ξ) ∧ inf

ζ∈U
ec(x,ξ)ec(ξ,ζ)F (ζ)

)
= inf

ξ∈U
ec(x,ξ)

(
F (ξ) ∧ inf

ζ∈U
ec(ξ,ζ)F (ζ)

)
= inf

ξ∈U
ec(x,ξ)eum(ξ) = eMum(x),

which proves (4.3.20). Combining (4.3.19) and (4.3.20), we get that the pair
(um, λm) is a solution to (4.3.17). Finally, using Proposition A.3.3 again, for
any x ∈ E, we get λm = infV ∈Vm J(x, V ), which concludes the proof.

Now, we link a solution to (4.3.17) with (4.3.16) and (4.3.18). The link is
based on the type of the semigroup r(f) given by (4.1.8).

Proposition 4.3.6. For any m ∈ N, let um ∈ Cb(E) and λm ∈ R be a solution
to (4.3.17). Then, for any m ∈ N, we get λm ≤ r(f). Moreover:

(1) If λm = r(f), then the no impulse strategy is optimal for (4.3.18).

(2) If λm < r(f), then the pair (um, λm) satisfies (4.3.16).

Proof. Let us fix m ∈ N. First, we show that we get λm ≤ r(f). Recalling

Pft from (2.1.5) and using (A.4.2), for any x ∈ E and the no impulse strategy
V0 ∈ V, we get

J(x, V0) = lim sup
T→∞

1

T
lnPft 1(x) ≤ lim sup

T→∞

1

T
sup
y∈E

lnPft 1(y) = r(f).

Also, using Theorem 4.3.5, for λm we get

λm = inf
V ∈Vm

J(x, V ) ≤ J(x, V0) ≤ r(f), (4.3.22)

which concludes the proof of λm ≤ r(f).
Now, suppose that λm = r(f). From (4.3.22), we get r(f) = J(x, V0). This

implies the optimality of the no impulse strategy.
Next, suppose that λm < r(f). To show that (um, λm) satisfies (4.3.16),

we use the change of measure technique based on the Multiplicative Pois-
son Equation. In this way, as in Proposition 4.3.2, we can replace the term
(f(·) − λm) in (4.3.17) by some positive constant and use the results from
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Chapter 3. Recalling v from (B5b), um from (4.3.17), and (Qx) from (A.4.7),
for any m ∈ N and x ∈ E, we set

wm(x) := um(x)− v(x) + ‖um‖+ ‖v‖+ ‖Mum‖,
Gm(x) := Mum(x)− v(x) + ‖um‖+ ‖v‖+ ‖Mum‖,

Smh(x) := min
(
eGm(x),EQ

x

[
e(r(f)−λm)δmh(Xδm)

])
, h ∈ C+

b (E).

Using (A.4.8) and (4.3.17), we get

ewm(x) = Smewm(x), x ∈ E. (4.3.23)

Also, noting that Gm ∈ C+
b (E) and r(f)−λm > 0, and using Theorem 3.2.15,

we get

ewm(x) = inf
τ∈T mx,b

EQ
x

[
e(r(f)−λm)τ+Gm(Xτ )

]
;

note that here we used (4.3.8) and the fact that, for any x ∈ E, the families
of Px and Qx a.s. bounded stopping times coincide. Recalling (A.4.8) and the
definitions of wm and Gm, we conclude that um satisfies (4.3.16).

Remark 4.3.7. In Proposition 4.3.6, to link a solution to the one-step equa-
tion (4.3.17) with the dyadic Bellman equation (4.3.16), we used the condition
λm < r(f). This, combined with the change of measure transformation, facil-
itates the use of Theorem 3.2.15. Using the same argument for λ = r(f), we
get

ewm(x) = min
(
eGm(x),EQ

x

[
ewm(Xδm )

])
, x ∈ E, (4.3.24)

see the argument leading to (4.3.23) for details. In particular, there is no run-
ning cost function and the results from Section 3.2 are not applicable. How-
ever, (4.3.24) could be embedded in the framework of classic optimal stopping
problems considered in Shiryaev (1978). In particular, using Theorem 15 from
Chapter I of Shiryaev (1978), we get that wm satisfying (4.3.24) could be
represented as

ewm(x) = inf
τ∈T mx

EQ
x

[
eGm(Xτ )

]
, x ∈ E,

if and only if lim infn→∞wm(Xnδm) = lim infn→∞Gm(Xnδm) Qx a.s. Unfor-
tunately, our setting does not allow for a direct verification of this condition.
Instead, for the case λm = r(f), we use the results from the theory of finite
time horizon impulse control problems; see Theorem 4.3.9 for details. ♦
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Let (λm), m ∈ N, be a sequence of constants that corresponds to the solu-
tions (um, λm) to the dyadic Bellman equations (4.3.16). Using Theorem 4.3.5,
we know that this sequence exists and, in fact, it is unique as the values of
the dyadic impulse control problems. Also, we get that (λm) is decreasing and
λm ≥ −‖f‖. Thus, we may define the finite limit

λ := lim
m→∞

λm. (4.3.25)

From Proposition 4.3.6 we know that λ ≤ r(f). In Theorem 4.3.8 we show
that if λ < r(f), then there exists a solution to (4.3.3).

Theorem 4.3.8. Let λ be given by (4.3.25). If λ < r(f), then there exists a
map u ∈ Cb(E), such that the pair (u, λ) is a solution to (4.3.3).

Proof. For transparency, we split the proof into two steps: (1) proof of the fact
that (Mumn) → φ uniformly to some φ ∈ Cb(E), along a subsequence (mn);
(2) proof of the identity φ = Mu for a suitable u. In the end, we comment
how to combine these steps to get (4.3.3) and conclude the proof.

Step 1. We show that, using the Arzelà–Ascoli theorem, one can choose a
uniformly convergent subsequence of (Mum). First, we show that (Mum) is
uniformly bounded on E. Note that we may choose a sequence (um) in such
a way that, for any m ∈ N and ξ ∈ U , we get um(ξ) ≥ 0. Indeed, for a generic
ũm ∈ Cb(E), m ∈ N, which is a solution to the Bellman equation (4.3.17), we
may set

um(x) := ũm(x)− inf
ξ∈U

ũm(ξ), m ∈ N, x ∈ E; (4.3.26)

note that (ũm) exists due to Theorem 4.3.5 and (um) also satisfies (4.3.17).
Consequently, from (4.3.26) and the non-negativity of c, for any m ∈ N and
x ∈ E, we get Mum(x) ≥ 0, i.e. we have found the uniform lower bound for
(Mum). Also, recalling (4.3.26), for any m ∈ N and x ∈ E, we get

Mum(x) = Mũm(x)− inf
ξ∈U

ũm(ξ) ≤
(
‖c‖+ inf

ξ∈U
ũm(ξ)

)
− inf
ξ∈U

ũm(ξ) = ‖c‖,

and consequently we get 0 ≤Mum(x) ≤ ‖c‖, m ∈ N, x ∈ E.
Second, we show that the family (Mum) is equicontinuous. In fact, this

follows directly from the inequality

|Mum(x)−Mum(y)| ≤ sup
ξ∈U
|c(x, ξ)− c(y, ξ)|, m ∈ N, x, y ∈ E (4.3.27)

and the continuity of the shift-cost function c. Thus, using the Arzelà–Ascoli
theorem, for any N ∈ N and the compact set B(N) := {x ∈ E : ‖x‖ ≤ N}, we
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can find a subsequence of (Mum)m∈N, say (MumNn )n∈N, and φN ∈ Cb(E) such
that

MumNn (x)→ φN (x), n→∞, (4.3.28)

uniformly in x ∈ B(N).

Third, using a diagonal argument, we show that the limit may be chosen
independently of N . Indeed, using recursive procedure and taking consecutive
subsequences {mN

n : n ∈ N} ⊆ {mN−1
n : n ∈ N}, we can find a sequence of

functions (φN )N∈N, such that φN (x) = φN−1(x) for x ∈ B(N − 1). Next, for
any x ∈ E, we set Nx := inf{N ∈ N : x ∈ B(N)} and define φ ∈ Cb(E) by
φ(x) := φNx(x). Also, for the diagonal sequence (mn) given by mn := mn

n,
n ∈ N, we get

Mumn(x)→ φ(x), n→∞, (4.3.29)

uniformly in x ∈ B(N), for any N ∈ N. Also, using (4.3.27), we get that φ
satisfies

|φ(x)− φ(y)| ≤ sup
ξ∈U
|c(x, ξ)− c(y, ξ)|, x, y ∈ E. (4.3.30)

Finally, we show that the convergence Mumn → φ is (globally) uniform.
Let ε > 0. From (4.1.3), we get that there exists Nε ∈ N such that

sup
ξ∈U
|c(x, ξ)− c(y, ξ)| ≤ ε

3
, x, y /∈ B(Nε). (4.3.31)

Since Mwmn(x) → φ(x) uniformly in x ∈ B(Nε + 1), it is sufficient to show
that

sup
x/∈B(Nε)

|Mumn(x)− φ(x)| → 0, n→∞. (4.3.32)

Let x /∈ B(Nε) and y ∈ B(Nε + 1) \ B(Nε). Recalling (4.3.27) and (4.3.30),
we get

|Mumn(x)− φ(x)| ≤ |Mumn(x)−Mumn(y)|+ |Mumn(y)− φ(y)|
+ |φ(y)− φ(x)|
≤ |Mumn(y)− φ(y)|+ 2 sup

ξ∈U
|c(x, ξ)− c(y, ξ)|.

Since y ∈ B(Nε+1), starting from some n0 ∈ N, we get |Mumn(y)−φ(y)| ≤ ε
3

for n ≥ n0. This, combined with (4.3.31), shows that for n ≥ n0, we get

sup
x/∈B(Nε)

|Mumn(x)− φ(x)| ≤ ε.
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Thus, we get (4.3.32), which concludes Step 1 of the proof.

Step 2. For brevity, we suppress the subscript n from the diagonal sequence
(mn) given in Step 1, i.e. we assume that Mum(x) → φ(x) as m → ∞
uniformly in x ∈ E. We show that

φ(x) = Mu(x), x ∈ E, (4.3.33)

where u : E → R is given by

eu(x) := inf
τ∈Tx,b

Ex
[
e
∫ τ
0 (f(Xs)−λ)ds+φ(Xτ )

]
; (4.3.34)

note that this shows the existence of a solution to (4.3.3).

As in the proof of Proposition 4.3.6, we use the change of measure technique
to transform (4.3.34) into the setting where the assumptions of Theorem 3.5.3
are satisfied. For any m ∈ N and x ∈ E, let us define

Gm(x) := Mum(x)− v(x) + ‖Mum‖+ ‖v‖,
G(x) := φ(x)− v(x) + ‖φ‖+ ‖v‖,
dm := r(f)− λm,
d := r(f)− λ,

wm(x) := um(x)− v(x) + ‖Mum‖+ ‖v‖,
w(x) := u(x)− v(x) + ‖φ‖+ ‖v‖.

where v is a solution to (4.1.7). Note that Gm → G uniformly and dm ↑ d.
Moreover, recalling that we assumed λ < r(f), we get d > 0. Next, using
Proposition 4.3.6, we get that (um, λm) is a solution to (4.3.16). Thus, us-
ing (A.4.8), we get

wm(x) = inf
τ∈T mx,b

lnEQ
x

[
edmτ+Gm(Xτ )

]
, m ∈ N, x ∈ E.

Similarly, using (4.3.34) and (A.4.8), we get

w(x) = inf
τ∈Tx,b

lnEQ
x

[
edτ+G(Xτ )

]
, x ∈ E.

Hence, using Theorem 3.5.3, we get wm(x) → w(x) as m → ∞ uniformly in
x from compact sets. Thus, recalling uniform convergence of Mum to φ, we
get um(x) → u(x) as m → ∞ uniformly in x from compact sets. Moreover,
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using Theorem 3.4.11, we get w ∈ Cb(E) and consequently u ∈ Cb(E). Finally,
recalling (4.3.4), we get

sup
x∈E
|Mum(x)−Mu(x)| ≤ sup

ξ∈U
|um(ξ)− u(ξ)| → 0, m→∞.

This implies uniform convergence of Mum to Mu. Recalling that, from Step
1, we know that Mum → φ, we get φ(x) = Mu(x), x ∈ E. Recalling (4.3.34),
we conclude the proof.

Finally, we are ready to link the constant λ given by (4.3.25) to an optimal
strategy and the optimal value of (4.3.1); see Theorem 4.3.9. In the case
λ < r(f), Theorem 4.3.8 guarantees the existence of a solution to the Bellman
equation (4.3.3), which, combined with Theorem 4.3.4, gives the optimal value
and an optimal impulse control strategy for (4.3.1). In the degenerate case
λ = r(f), due to the monotonicity of (λm), we know that λm = r(f) for
any m ∈ N. Thus, from Proposition 4.3.6, we get the no impulse strategy is
optimal for any dyadic time-grid. As expected, we show that this implies the
optimality of the no impulse strategy also in the continuous time setting. Here
we make an additional assumption E = U , which allows us to use finite time
horizon results from Proposition 4.2.9.

Theorem 4.3.9. Let λ be given by (4.3.25). Then:

(1) If λ < r(f), then λ = infV ∈V J(x, V ) for any x ∈ E, and the strategy
defined in (4.3.10) via the Bellman equation (4.3.3) is optimal.

(2) If λ = r(f) and E = U , then λ = infV ∈V J(x, V ) for any x ∈ E, and the
no impulse strategy is optimal.

Proof. Suppose that λ < r(f). Then, from Theorem 4.3.8, we get that there
exists a solution (u, λ) to (4.3.3). Thus, using Theorem 4.3.4, we get the
optimal value and an optimal strategy for (4.3.1).

Now, suppose that λ = r(f). Using Theorem 4.3.5 and Proposition 4.3.6,
we get that the cost of the no impulse strategy equals r(f). Thus, it is sufficient
to show that, in this case, for any x ∈ E, we get infV ∈V J(x, V ) ≥ r(f). For the
contradiction, suppose that infV ∈V J(x0, V ) < r(f) for some x0 ∈ E. Then,
for some ε > 0, we get

lim sup
T→∞

inf
V ∈V

1

T
JT (x0, V ) ≤ inf

V ∈V
J(x0, V ) < r(f)− ε, (4.3.35)

where JT is given by (4.2.1). Next, we can find T0 ∈ N big enough to get

inf
V ∈V

1

T0
JT0(x0, V ) ≤ lim sup

T→∞
inf
V ∈V

1

T
JT (x0, V ) +

ε

4
and

‖c‖
T0
≤ ε

4
. (4.3.36)
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Using Propostion 4.2.9, we can find n ∈ N, m ∈ N, and a strategy V̄ ∈ Vmn ,
such that

1

T0
JT0(x0, V̄ ) ≤ inf

V ∈V

1

T0
JT0(x0, V ) +

ε

4
. (4.3.37)

We define the strategy Ṽ in the following way: for any period [kT0, (k+ 1)T0],
k ∈ N, we follow the strategy V̄ and at (k + 1)T0 we shift the process to x0.
Since E = U and T0 ∈ N, for any m ∈ N, we get Ṽ ∈ Vm. Then, we get

J(x0, Ṽ )

= lim sup
k→∞

1

kT0
ln

(
E

(x0,Ṽ )

[
e

∫ T0
0 f(Ys)ds+

n∑
i=1

1{τi≤T0}c(Y
−
τi
,ξi)+c(YT0 ,x0)

])k
≤ 1

T0
JT0(x0, V̄ ) +

‖c‖
T0

. (4.3.38)

Combining (4.3.35)–(4.3.37) with (4.3.38), we get

J(x0, Ṽ ) < r(f)− ε

4
. (4.3.39)

Recalling that, by Proposition 4.3.6, we get infV ∈Vm J(x0, V ) = r(f), m ∈ N,
we conclude that (4.3.39) leads to the contradiction.
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Chapter 5

Reference examples and
further remarks

In this chapter, we provide examples and further remarks related to the con-
ditions and results considered in this thesis. In particular, we comment on the
sets of assumptions from Chapter 3 and Chapter 4. We verify them for several
classes of Markov processes and show how to effectively embed some practical
dynamics into the framework considered in this thesis. Also, in this chap-
ter we provide specific computable examples related to the optimal stopping
Bellman equation, both in the discrete and continuous time settings. In par-
ticular, using the results from Chapter 3, we provide explicit formulae for the
value functions of the suitable stopping problems and show that the optimal
stopping Bellman equation may admit multiple solutions.

The structure of this chapter is as follows. In Section 5.1, we comment
on the optimal stopping framework. Next, in Section 5.2, we discuss several
examples that could be embedded in the impulse control setting. Finally,
in Section 5.3, we discuss computable toy examples related to the optimal
stopping Bellman equation.

The results presented in this chapter are based on Section 5 of Jelito et al.
(2020) and Section 6 of Jelito and Stettner (2022). However, it should be noted
that we substantially expanded the analysis of some examples. In particular, in
Example 5.2.1, we provide more detailed comments on the process construction
and the fact that the resulting dynamics satisfies the necessary conditions.
Also, in Example 5.3.5, we provide a detailed discussion on the verification
of the model assumptions and the construction of multiple solutions to the
Bellman equation.
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5.1 Discussion on the optimal stopping framework

In this section, we discuss in more detail selected assumptions from Section 3.1
and we provide exemplary dynamics that could be embedded in that frame-
work. More specifically, we focus on (A2)–(A3) and give a generic integrability
condition that facilitates the verification of these assumptions. Note that the
remaining conditions from Section 3.1 are relatively easy to verify. In par-
ticular, Assumption (A1) only requires some regularity properties of the cost
functions while Assumption (A4) could be derived e.g. from the C0-Feller
property; see Proposition 2.1.7 for details.

Throughout this section, by ((Xt)t≥0, (Px)x∈E) we denote a continuous
time standard Cb-Feller-Markov process and we assume that the maps g and
G satisfies (A1). Also, for any T ≥ 0, we define ζT := supt∈[0,T ] e

G(Xt). In
Lemma 5.1.1 below we show that (A2) and (A3) could be derived from the
following condition:

(UI) (Uniform integrability). For any T ≥ 0 and a compact set K ⊆ E, we
have

lim
m→∞

sup
x∈K

Ex
[
ζT 1{ζT≥m}

]
= 0.

This condition could be seen as a stronger form of the integrability of
ζT , T ≥ 0. Namely, it requires that the tail of ζT , T ≥ 0, is Px-integrable
uniformly in x from a compact set. Exemplary dynamics satisfying (UI) is
shown in Example 5.1.2.

Lemma 5.1.1. Suppose that (UI) is satisfied. Then, we get (A2) and (A3).

Proof. For (A2), let us fix some T ≥ 0 and x ∈ E. Using (UI) with K := {x},
we may find m0 ∈ N such that, for any m ≥ m0, we get Ex

[
ζT 1{ζT≥m}

]
≤ 1.

Thus, for m ≥ m0, we get

Ex [ζT ] = Ex
[
ζT 1{ζT<m}

]
+ Ex

[
ζT 1{ζT≥m}

]
≤ m+ 1 <∞,

which shows (A2).
For (A3), let T ≥ 0, x ∈ E, (xn) → x ∈ E, and h ∈ C+(E) be such that

h(·) ≤ G(·). Let Γ ⊆ E be a compact set satisfying x ∈ Γ and (xn) ⊂ Γ.
Then, we get∣∣∣Ex [e∫ T0 g(Xs)ds+h(XT )

]
− Exn

[
e
∫ T
0 g(Xs)ds+h(XT )

]∣∣∣
≤
∣∣∣Ex [e∫ T0 g(Xs)ds+h(XT )∧m

]
− Exn

[
e
∫ T
0 g(Xs)ds+h(XT )∧m

]∣∣∣
+ 2 sup

y∈Γ

∣∣∣Ey [e∫ T0 g(Xs)ds+h(XT )
]
− Ey

[
e
∫ T
0 g(Xs)ds+h(XT )∧m

]∣∣∣ .
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Also, using the Cb-Feller property and Proposition 2.1.8, we get that the map

x 7→ Ex
[
e
∫ T
0 g(Xs)ds+h(XT )∧m

]
is continuous for any m ∈ N. Thus, to conclude the proof, it is enough to show
that

sup
y∈Γ

∣∣∣Ey [e∫ T0 g(Xs)ds+h(XT )
]
− Ey

[
e
∫ T
0 g(Xs)ds+h(XT )∧m

]∣∣∣→ 0, m→∞.

(5.1.1)
Recalling that h(·) ≤ G(·) and using (UI), we get

sup
y∈Γ

Ey
[
e
∫ T
0 g(Xs)ds

∣∣∣eh(XT ) − eh(XT )∧m
∣∣∣]

≤ 2 sup
y∈Γ

Ey
[
e
∫ T
0 g(Xs)dseh(XT )1{h(XT )≥m}

]
≤ 2eT‖g‖ sup

y∈Γ
Ey
[
ζT 1{ζT≥em}

]
→ 0, m→∞.

Thus, we get (5.1.1), which concludes the proof.

Now, we show how to verify Condition (UI) in a simple Brownian motion
model; see Example 5.1.2. Note that another application of (UI) can be found
in Example 5.3.5.

Example 5.1.2. Let E := R, G(x) := |x|, and the process (Xt) be a Brownian
motion. Note that under Px we get Xt = x + Wt, where W is a standard
Brownian motion (starting from 0). For simplicity, for any T ≥ 0, we set
ζT := supt∈[0,T ] e

|Xt| and ST := supt∈[0,T ] |Wt|, T ≥ 0. Let K ⊆ E be a
compact set and let T ≥ 0. We show that we get

lim
m→∞

sup
x∈K

Ex
[
ζT 1{ζT≥em}

]
= 0, (5.1.2)

which implies (UI).

Note that, setting LK := supx∈K |x|, for any m ∈ N, we get

sup
x∈K

Ex
[
ζT 1{ζT≥em}

]
= sup

x∈K
Ex

[
sup
t∈[0,T ]

e|x+Wt|1{supt∈[0,T ] |x+Wt|≥m}

]
≤ sup

x∈K
e|x|Ex

[
eST 1{ST≥m−LK}

]
. (5.1.3)
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Moreover, we get that Ex
[
eST 1{ST≥m−LK}

]
is independent of x ∈ E. Thus,

noting that supx∈K e
|x| <∞, to conclude the proof of (5.1.2), it is enough to

show
E0

[
eST
]
<∞. (5.1.4)

Indeed, noting that E0

[
eST 1{ST<m−LK}

]
converges increasingly to E0

[
eST
]

as
m→∞, using the identity

E0

[
eST
]

= E0

[
eST 1{ST<m−LK}

]
+ E0

[
eST 1{ST≥m−LK}

]
, m ∈ N,

and recalling (5.1.4), we get limm→∞ E0

[
eST 1{ST≥m−LK}

]
= 0, This, together

with (5.1.3), implies (5.1.2).
Let us now show (5.1.4). Noting that (−W ) is also a standard Brownian

motion, we get

E0

[
eST
]
≤ E0

[
emax(supt∈[0,T ]Wt,supt∈[0,T ](−Wt))

]
≤ 2E0

[
esupt∈[0,T ]Wt

]
.

Recall that, by the reflection principle, the distribution of supt∈[0,T ]Wt is equal
to the distribution of |WT |; see e.g. Proposition 3.7 in Chapter III of Revuz
and Yor (1999) for details. Thus, we get E0

[
eST
]
≤ 2E0

[
e|WT |

]
< ∞, which

concludes the proof. �

5.2 Discussion on the impulse control framework

In this section, we discuss in more detail selected assumptions from Section 4.1.
More specifically, we focus on Assumptions (B4)–(B5) and directly verify them
for two classes of continuous time Markov processes, i.e. piecewise determin-
istic processes and reflected diffusions (with possible jumps). The remaining
conditions for the impulse control framework, i.e. Assumption (B1)–(B3), are
relatively easy to verify as they require the compactness of a suitable subspace
of the state space or are related to the cost functions specification.

5.2.1 Piecewise deterministic Markov processes

The first class of dynamics satisfying (B4)–(B5) takes the form of piecewise
deterministic processes. In a nutshell, the process exhibits deterministic be-
haviour on the random time intervals and is subject to jumps at the exponen-
tial jump times. This class of processes was introduced in Davis (1984) and
discussed in detail in Davis (1993); see also Bäuerle and Rieder (2011) for a
more recent use in the optimisation context. Example 5.2.1 is partially based
on Example 5.2 from Pitera and Stettner (2021).
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Example 5.2.1. In this example ((Xt)t≥0, (Px)x∈E), is a piecewise determin-
istic Markov process with values in the state space E := R with the Borel
σ-field E . In a nutshell, under the measure Px, the process X starts at x ∈ E
and up to the exponentially distributed time T1 follows some deterministic dy-
namics. At T1, the process is subject to the immediate jump with a suitable
jump measure. Then, the process starts its evolution at the after-jump state
and the procedure repeats.

Let us now provide a more extensive comment on the process construction;
details can be found in Davis (1993). First, let (Tn), n ∈ N, be a sequence of
random variables such that T0 ≡ 0 and the increments (Tn+1 − Tn), n ∈ N,
are independent and identically distributed random variables following the
exponential distribution with the rate parameter β > 0. The sequence (Tn),
n ∈ N∗, indicates the jump times of the process. Second, let R+ 3 t 7→ xxt ∈ E,
x ∈ E, be a solution to a (deterministic) stable differential equation starting
in x ∈ E, i.e. we have

dxxt = F (xxt )dt, x ∈ E, (5.2.1)

with xx0 = x and a suitable map F . Assuming a sufficient regularity of F ,
we get xxt = φ(x, t), x ∈ E, t ≥ 0, for some jointly continuous function φ.
The maps (xxt ) describe deterministic part of X. More specifically, we define
the process (Xt) between the consecutive jumps as Xt := φ(XTn , t − Tn),
t ∈ (Tn, Tn+1). At Tn, the process is subject to immediate jump. We assume
that the jump measure for the process being at state x ∈ E is the Gaussian
measure given by

Q(x,A) :=

∫
A

1√
2π
e−

(y−B(x))2

2 dy, x ∈ E, A ∈ E ,

where B ∈ Cb(E) is some fixed map describing the expected value of Q(x, ·).
In other words, we get

XTn = B(XT−n
) + ξn, n ∈ N∗,

where XT−n
denotes the state of the process right-before the jump and (ξn),

n ∈ N∗, is a sequence of independent and identically distributed standard
Gaussian random variables. Using Theorem 25.5 and Theorem 27.6 from Davis
(1993), we find a family of measures (Px), x ∈ E, such that ((Xt)t≥0, (Px)x∈E)
is a standard Cb-Feller-Markov process with values in (E, E). In particular, un-
der this family of measures, for any x ∈ E, we get Px[X0 = x] = Px[xx0 = x] = 1.

Let us now show that the process X satisfies the assumptions from Sec-
tion 4.1. For transparency, we split the argument into three steps: (1) proof
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that Assumption (B4) is satisfied; (2) proof that Assumption (B5a) is satisfied;
(3) proof that Assumption (B5b) is satisfied.

Step 1. We show that Assumption (B4) is satisfied. For any Γ ⊂ E and
t, r > 0, let us define MΓ(t, r) := supx∈Γ Px[sups∈[0,t] |Xs − x| ≥ r]. First, we
show that, for any compact set Γ ⊂ E and r0 > 0, we get

lim
t→0

MΓ(t, r0) = 0. (5.2.2)

For the contradiction, suppose that there exist a compact set Γ ⊂ E, r0 > 0,
and ε > 0, such that, for any n ∈ N∗, we may find xn ∈ Γ satisfying

Pxn

[
sup

s∈[0, 1
n

]

|Xs − x| ≥ r0

]
≥ ε > 0. (5.2.3)

Next, recalling that T1 is exponentially distributed (under any Px), we may
find n0 ∈ N∗ such that, for any n ≥ n0, we get infx∈Γ Px

[
T1 >

1
n

]
≥ 1 − ε

2 .
Combining this with (5.2.3), for any n ≥ n0, we get

Pxn

[
sup

s∈[0, 1
n

]

|Xs − x| ≥ r0, T1 >
1

n

]
≥ ε

2
. (5.2.4)

Next, note that, on the event {T1 > 1
n}, under the measure Px, we get

Xs = φ(x, s), s ∈ [0, 1
n ], x ∈ E. Also, using the joint continuity of φ and

the compactness of Γ, we may find n1 ∈ N∗ such that, for any n ≥ n1, we get

sup
s∈[0, 1

n
]

sup
x∈Γ
|φ(x, s)− x| < r0.

Thus, for any n ≥ max(n0, n1), we get

Px

[
sup

s∈[0, 1
n

]

|Xs − x| ≥ r0, T1 >
1

n

]

= Px

[
sup

s∈[0, 1
n

]

|φ(x, s)− x| ≥ r0, T1 >
1

n

]
= 0, x ∈ Γ,

which contradicts (5.2.4). Consequently, we get (5.2.2).
Second, we show that, for any compact set Γ ⊂ E and t0 > 0, we get

lim
r→∞

MΓ(t0, r) = 0. (5.2.5)
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For the contradiction, suppose that there exist a compact set Γ ⊂ E, t0 > 0,
and ε > 0, such that, for any r > 0, we get MΓ(t0, r) ≥ ε > 0. Next, note that
Tn, n ∈ N∗, as the sum of the independent exponentially distributed random
variables, follows the Erlang distribution with the shape parameter n and the
rate parameter β. Hence, we we may find n0 ∈ N∗ such that, for any x ∈ E,
we get Px[Tn0 > t0] ≥ 1− ε

2 . Thus, for any r > 0, we get

sup
x∈Γ

Px

[
sup

s∈[0,t0]
|Xs − x| ≥ r, Tn0 > t0

]
≥ ε

2
. (5.2.6)

Noting that, for any r > 0, we get

sup
x∈Γ

Px

[
sup

s∈[0,t0]
|Xs − x| ≥ r, Tn0 > t0

]

= sup
x∈Γ

Px

[
n0−1⋃
k=0

{t0 ∈ [Tk, Tk+1), sup
s∈[0,t0]

|Xs − x| ≥ r, Tn0 > t0}

]

≤
n0−1∑
k=0

sup
x∈Γ

Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[0,t0]
|Xs − x| ≥ r

]
, (5.2.7)

for the contradiction it is enough to show that we may find R > 0 such that,
for any k = 0, . . . , n0 − 1, we get P (k,R) ≤ ε

4n0
, where

P (k, r) := sup
x∈Γ

Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[0,t0]
|Xs − x| ≥ r

]
, r > 0.

Also, note that, for any k = 0, . . . , n0 − 1 and r > 0, we get

P (k, r) ≤
k∑
i=0

sup
x∈Γ

Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[Ti,Ti+1∧t0)
|Xs − x| ≥ r

]
.

We show that, for any k = 0, . . . , n0 − 1 and i = 0, . . . , k, we may find Rik > 0
such that Pi(k,R

i
k) ≤

ε
4n2

0
, where

Pi(k, r) := sup
x∈Γ

Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[Ti,Ti+1∧t0)
|Xs − x| ≥ r

]
, r > 0.

Then, noting that, for any k = 0, . . . , n0 − 1, the map r 7→ P (k, r) is de-
creasing, and setting R := max{Rik : k = 0, . . . , n0 − 1, i = 0, . . . , k}, we
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get P (k,R) ≤ ε
4n0

, k = 0, . . . , n0 − 1. This, combined with (5.2.7), shows

supx∈Γ Px
[
sups∈[0,t0] |Xs − x| ≥ r, Tn0 > t0

]
≤ ε

4 , which contradicts (5.2.6).

Now, let us fix k = 0, . . . , n0 − 1 and i = 0, . . . , k, and show that, for some
Rik > 0, we get

Pi(k,R
i
k) ≤

ε

4n2
0

. (5.2.8)

For transparency, we use separate arguments for i = 0 and for i > 0. For
i = 0, using the continuity of φ, we may find R0

k > 0 such that

sup
s∈[0,t0]

sup
x∈Γ
|φ(x, s)− x| < R0

k.

Then, noting that

P0(k,R0
k) = sup

x∈Γ
Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[0,T1∧t0)
|φ(x, s)− x| ≥ R0

k

]
= 0 ≤ ε

4n2
0

,

we get (5.2.8) for i = 0. Next, we consider i ∈ {1, . . . , k}. Note that, using
the Gaussianity of ξi, we may find a compact set Ki ⊂ E such that, for any
x ∈ E, we get

Px[ξi ∈ Ki] ≥ 1− ε

4n2
0

.

Also, using the boundedness of the map B, we may find a compact set Γi ⊂ E
such that

{y1 + y2 : y1 ∈ B(R), y2 ∈ Ki} ⊂ Γi.

Next, using the continuity of φ, we may find Rik > 0 such that

sup
s∈[0,t0]

sup
y∈Γi

|φ(y, s)|+ sup
z∈Γ
|z| < Rik.

In particular, on the event {t0 ∈ [Tk, Tk+1)}∩{ξi ∈ Ki}, for any x ∈ Γ, we get

sup
s∈[Ti,Ti+1∧t0)

|Xs − x| = sup
s∈[Ti,Ti+1∧t0]

|φ(XTi , s− Ti)− x|

= sup
s∈[Ti,Ti+1∧t0)

|φ(B(XT−i
) + ξi, s− Ti)− x|

= sup
s∈[0,t0]

sup
y1∈B(R)

sup
y2∈Ki

|φ(y1 + y2, s)|+ sup
z∈Γ
|z| < Rik.
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Thus, noting that

Pi(k,R
i
k) ≤ sup

x∈Γ
Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[Ti,Ti+1∧t0)
|Xs − x| ≥ Rik, ξi /∈ Ki

]

+ sup
x∈Γ

Px

[
t0 ∈ [Tk, Tk+1), sup

s∈[Ti,Ti+1∧t0)
|Xs − x| ≥ Rik, ξi ∈ Ki

]
≤ sup

x∈Γ
Px[ξi /∈ Ki] + 0 ≤ ε

4n2
0

,

we get (5.2.8). Consequently, we get (5.2.5), which concludes the proof of this
step.

Step 2. We show that (B5a) is satisfied. Let us fix x ∈ E, A ⊂ E, and t > 0.
Also, to simplify the notation, we set C−1(s) := {y ∈ E : φ(y, s) ∈ C}, C ∈ E ,
s ≥ 0. Then, recalling that T1 and T2 − T1 are independent exponentially
distributed random variables, we get

Px[Xt ∈ A] ≥ Px[t ∈ [T1, T2), Xt ∈ A]

= Px[t ∈ [T1, T2), φ(XT1 , t− T1) ∈ A]

= Px[t ∈ [T1, T2), φ(B(xxT1) + ξ1, t− T1) ∈ A]

= Px[t ≥ T1, t− T1 < T2 − T1, (B(xxT1) + ξ1) ∈ A−1(t− T1)]

=

∫ t

0

(∫ ∞
t−s1

βe−βs2ds2

)
Q(xxs1 , A

−1(t− s1))βe−βs1ds1. (5.2.9)

Also, recalling that Q(y, ·) is the Gaussian measure with mean B(y) and using
the fact that B is bounded, we may find a constant a > 0 and a probability
measure ν on (E, E), such that ν(U) > 0 and Q(y, C) ≥ aν(C), y ∈ E, C ∈ E .
Thus, from (5.2.9), we get

Px[Xt ∈ A] ≥ a
∫ t

0

(∫ ∞
t−s1

βe−βs2ds2

)
µ(A−1(t− s1))βe−βs1ds1

= a

∫ t

0
(1− e−β(t−s1))ν(A−1(t− s1))βe−βs1ds1.

Thus, setting νt(C) := 1
at
ν̃t(C), C ∈ E , where

ν̃t(C) := a

∫ t

0
(1− e−β(t−s1))ν(C−1(t− s1))βe−βs1ds1, C ∈ E ,
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and at := ν̃t(E), we get Px[Xt ∈ A] ≥ ν̃t(A) = atνt(A). Recalling that x ∈ E
was arbitrary and the lower bound is independent of x ∈ E, we get (B5a),
which concludes the proof of this step.

Step 3. We show (B5b). Using (B5a), for any t > 0, we get

κt := sup
x,y∈E

sup
A∈E

(Px[Xt ∈ A]− Py[Xt ∈ A])

= sup
x,y∈E

sup
A∈E

(1− Px[Xt ∈ Ac]− Py[Xt ∈ A])

≤ 1− atνt(Ac)− atνt(A) = 1− at < 1.

Thus, for any f ∈ C+
b (E) satisfying κte

t‖f‖sp < 1 for t > 0 small enough, using
Theorem A.4.1, we get (B5b). �

5.2.2 Reflected diffusions

The next two examples are related to reflected diffusions (with jumps). In a
nutshell, we consider a solution to a suitable stochastic differential equation
that is reflected when it reaches the boundary of the domain. Example 5.2.2
considers a compact domain reflected diffusion process studied in Menaldi and
Robin (1997) and Garroni and Menaldi (2002). Example 5.2.3 could be seen
as an extension of Example 5.2.2 in which jumps are allowed; see Remark 2.1b
in Menaldi and Robin (2018) and references therein.

In the examples, to simplify the narrative, we use some terminology from
the partial differential equations theory. In particular, we say that some func-
tion is of Ck+α-class (for some k ∈ N and α ∈ (0, 1)) if it is k-times continuously
differentiable and its kth derivative is Hölder continuous with exponent α. We
refer to e.g. Section 1.1 in Garroni and Menaldi (2002) for a detailed discussion
on the related terminology.

Example 5.2.2. Let α ∈ (0, 1), let O be a bounded non-empty domain in
Rd with C2+α-class boundary ∂O, and let E be the closure of O. Also, let
A = (aij)

d
i,j=1 be a uniformly elliptic and symmetric matrix-valued mapping,

with bounded and Hölder continuous (with exponent α) margins aij : E → R.
Finally, let b := (bi)

d
i=1 be an Rd-valued mapping with C1+α(∂O)-class margins

that satisfies the non-tangentiality condition, i.e. for some b0 > 0 we get
b(x) · n(x) ≥ b0, x ∈ ∂O, where n(x) = (n1(x), . . . , nd(x)) denotes the unit
outward normal to O at x.

Following arguments leading to Equation (7.1.18) in Garroni and Menaldi
(2002), we get that there exists a weak solution to

dXt = A1/2(Xt)dWt − b(Xt)dξt, (5.2.10)
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where A1/2 denotes the positive square root of A. Namely, there exists a pair
of processes (Xt, ξt) with some d-dimensional Brownian motion (Wt), where
the process (Xt) is understood as the reflected diffusion, and (ξt) describes
the reflection; see Section 2.1 in Bensoussan and Lions (1984) for further dis-
cussion on the meaning of (5.2.10). From Section 7.1 in Garroni and Menaldi
(2002), we get that (Xt) is a Cb-Feller–Markov process with values in E and
the transition probability satisfying

Px [Xt ∈ A] =

∫
A
pt(x, y)dy, t > 0, x ∈ E, A ∈ B(E), (5.2.11)

where the density (x, y) 7→ pt(x, y) is continuous for any t > 0. Also, using
Theorem 4.3.7 from Garroni and Menaldi (2002) and the compactness of E, for
any t > 0, we can find constants 0 < at ≤ bt <∞ such that at ≤ pt(x, y) ≤ bt,
x, y ∈ E. Hence, recalling (4.1.6), we get that (B5) is satisfied. Also, recalling
that X is Cb-Feller and E is compact, we get that X is C0-Feller. Consequently,
using Proposition 2.1.7, we get that (B4) is satisfied. �

Example 5.2.3. Using the results from the theory of integro-differential equa-
tions, one could expand Example 5.2.2 by allowing jumps. More explicitly,
in Garroni and Menaldi (2002), it is shown that there exists a solution to

dXt = A1/2(Xt)dWt +

∫
Rd\{0}

zµX(dt, dz)− b(Xt)dξt. (5.2.12)

Here, µX denotes the measure associated with the Doob–Meyer decomposi-
tion of the suitable Lévy measure; we refer to Section 7.1 in Garroni and
Menaldi (2002) for details. Due to the second term in (5.2.12), the process
(Xt) might be seen as a reflected diffusion with jumps. Using similar logic as
in Example 5.2.2, one can show that (B4) and (B5) are satisfied. �

5.3 Non-uniqueness of a solution to the optimal stop-
ping Bellman equation

In this section, we provide computable toy examples related to the optimal
stopping Bellman equation. More specifically, we provide explicit formulae
for some infinite time horizon optimal stopping value functions. Also, we
show the specific form of the Bellman equation with a non-unique solution.
This proves that some of the results presented in Chapter 3 cannot be gen-
eralised. In particular, this applies to Theorem 3.2.6 and Theorem 3.4.3, in
which we characterise the structure of solutions to the Bellman equation. In
Section 5.3.1 we focus on the discrete time setting while in Section 5.3.2 we
focus on the continuous time case.
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5.3.1 Discrete time case

In this section, we show a dynamics with multiple solutions to the discrete
time Bellman equation (3.2.4). In fact, we find explicit formulae for the value
functions of the optimal stopping problems (3.2.1) and (3.2.2) and show that
they are not identically equal to each other. The argument extensively uses
the link between infinite and finite time horizon stopping problems stated in
Theorem 3.2.6.

Example 5.3.1. Let E := [0,+∞) ⊂ R, g ≡ c > 0, and G(x) := x, x ∈ E.
Let α ∈ [0, 1] and (Xn), n ∈ N, be a discrete time Markov process with a
transition probability

Px[X1 = 0] := α, Px[X1 = x+ 1] := 1− α, x ∈ E.

By direct calculations, we get that Assumptions (A1), (A2′), and (A3′) are
satisfied in this model.

Recalling (3.2.1) and (3.2.2), let us consider

w(x) := inf
τ∈T 0

x

lnEx
[
ecτ+Xτ

]
, x ∈ E, (5.3.1)

w(x) := inf
τ∈T 0

x,b

lnEx
[
ecτ+Xτ

]
, x ∈ E. (5.3.2)

Also, let K := ln
(

αec

1−(1−α)ec

)
; note that this constant is well defined if we have

(1 − α)ec < 1, otherwise we set K := +∞. We show that within this model
we get:

� If α ∈ [0, 1− e−c], then w(x) = x = w(x), x ∈ E.

� If α ∈ (1− e−c, 1− e−c−1], then w(x) = x ∧K and w(x) = x, x ∈ E.

� If α ∈ (1− e−c−1, 1], then w(x) = x ∧K = w(x), x ∈ E.

In particular, recalling Theorem 3.2.6, for α ∈ (1− e−c, 1− e−c−1], we get two
distinct solutions to the Bellman equation

ew(x) = min
(
ex, ec

(
αew(0) + (1− α)ew(x+1)

))
, x ∈ E. (5.3.3)

Namely, we get that both w and w satisfy (5.3.3), but we get w(x) < w(x) for
x > K. In fact, in this example we may construct infinitely many solutions
to (5.3.3); see Remark 5.3.4.

It should be noted that the equality w(x) = x corresponds to the situation
when instantaneous stopping is optimal; a similar relation holds for w. Thus,
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we get that, for α small enough (relative to c), immediate stopping is optimal.
However, for a sufficiently big α, it is optimal to wait until the process goes
to zero; see the argument below for details.

For transparency, we split the argument into four steps: (1) proof of
w(x) = x, x ∈ E, for α ∈ [0, 1 − e−c]; (2) proof of w(x) = x ∧ K, x ∈ E,
for α ∈ (1 − e−c, 1]; (3) proof of w(x) = x, x ∈ E for α ∈ [0, 1 − e−c−1]; (4)
proof of w(x) = x ∧K, x ∈ E for α ∈ (1− e−c−1, 1].

Step 1. We show that w(x) = x, x ∈ E, for α ∈ [0, 1 − e−c]. Recalling
Theorem 3.2.6, it is enough to show that limn→∞wn(x) = x, x ∈ E, where
the sequence (wn) is recursively defined as

w0(x) := 0, x ∈ E,
ewn+1(x) := ex ∧ ec(αewn(0) + (1− α)ewn(x+1)), n ∈ N, x ∈ E. (5.3.4)

Recalling Proposition 3.2.4, we get wn(x) ≥ w0(x) = 0, n ∈ N, x ∈ E. Thus,
noting that ec(αewn(0) + (1 − α)ewn(1)) ≥ ec > 1, we get wn(0) = 0 for any
n ∈ N. Consequently, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ewn(x+1)), n ∈ N, x ∈ E. (5.3.5)

Let us now show that

ewn(x) = ex ∧ ecn , n ∈ N∗, x ∈ E, (5.3.6)

where the sequence (cn) is such that

ecn :=

n−1∑
k=1

α(1− α)k−1eck + (1− α)n−1ecn, n ∈ N∗. (5.3.7)

First, we we show that the sequence (cn) is increasing. Indeed, recalling that
c > 0, for any n ∈ N, we get

ecn+1 =
n−1∑
k=1

α(1− α)k−1eck + α(1− α)n−1ecn + (1− α)nec(n+1)

= ecn − (1− α)n−1ecn + α(1− α)n−1ecn + (1− α)nec(n+1)

= ecn − (1− α)necn + (1− α)nec(n+1)

= ecn + (1− α)necn(ec − 1) ≥ ecn . (5.3.8)

Also, noting that α ∈ [0, 1−e−c] implies (1−α)ec ≥ 1, from (5.3.7), we get that
cn →∞ as n→∞. Thus, letting n→∞ in (5.3.6) and using Theorem 3.2.6,
we get w(x) = x, x ∈ E.
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To show (5.3.6), we proceed by induction. For n = 1, directly from (5.3.4),
we get ew1(x) = ex ∧ ec = ex ∧ ec1 . Now, let us assume that, for some n ∈ N∗,
we get ewn(x) = ex ∧ ecn , x ∈ E. Then, recalling (5.3.5), for x ∈ E such that
x+ 1 ≥ cn, by direct calculation, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ecn) = ex ∧ ecn+1 .

Now, we show the claim for x ∈ E such that x + 1 < cn. To do this, let us
define

h(y) := ec(α+ (1− α)ey+1)− ey, y ∈ E. (5.3.9)

Noting that α ∈ [0, 1− e−c] implies ec+1(1− α) ≥ ec(1− α) ≥ 1, we get

d

dy
h(y) = ey(ec+1(1− α)− 1) ≥ 0, y ∈ E.

This, together with the estimate h(0) = ecα + (1 − α)ec+1 − 1 ≥ ecα ≥ 0,
shows

h(y) ≥ 0, y ∈ E; (5.3.10)

note that, in fact, this inequality is valid for any α ∈ [0, e−c−1]. In particular,
from (5.3.10), we get ec(α+ (1−α)ex+1) ≥ ex for x ∈ E such that x+ 1 < cn.
Thus, using (5.3.5) and the induction assumption, for x < cn − 1 ≤ cn+1, we
get

ewn+1(x) = ex ∧ ec(α+ (1− α)ex+1) = ex = ex ∧ ecn+1 , x ∈ E.

Consequently, we get (5.3.6). Thus, letting n→∞ and recalling that cn →∞,
we get w(x) = x, x ∈ E, which concludes the proof of this step.

Step 2. We show that w(x) = x ∧K, x ∈ E, for α ∈ (1 − e−c, 1]. As in Step
1, we show that

ewn(x) = ex ∧ ecn , n ∈ N∗, x ∈ E, (5.3.11)

where the sequences (wn) and (cn) are given by (5.3.4) and (5.3.7), respectively.
In this case, from α ∈ (1−e−c, 1], we get (1−α)ec < 1. Thus, recalling (5.3.7),
we get ecn → eK as n → ∞. Hence, letting n → ∞ in (5.3.11), and recalling
Theorem 3.2.6, we get w(x) = x ∧K, x ∈ E.

To show (5.3.11), we proceed by induction. For n = 1, as in Step 1, we
get ew1(x) = ex ∧ ec = ex ∧ ec1 , x ∈ E. Now, let us assume that, for some
n ∈ N∗, we get ewn(x) = ex ∧ ecn , x ∈ E. As in Step 1, we may show that (wn)
satisfies (5.3.5). Then, for x ∈ E such that x + 1 ≥ cn, by direct calculation,
we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ecn) = ex ∧ ecn+1 .

128:1008207001



125

Now, we show the claim for x ∈ E such that x+1 < cn. Recall that, by (5.3.8),
the sequence (cn) is increasing. Thus, from (5.3.5) and the induction assump-
tion, for x < cn − 1 ≤ cn+1 − 1 ≤ K − 1, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ex+1). (5.3.12)

Thus, it is enough to show ec(α+ (1− α)ex+1) ≥ ex for x ∈ [0,K − 1]. Let us
define h(y) := ec(α+ (1− α)ey+1)− ey, y ∈ E. Noting that

d

dy
h(y) = ey(ec+1(1− α)− 1),

we get that h is monotonic (increasing or decreasing). Thus, recalling that
eK = αec

1−(1−α)ec , and using the estimates

h(0) = ecα+ ec(1− α)e− 1 ≥ ec(α+ (1− α))− 1 = ec − 1 > 0,

h(K − 1) = ecα+ ec(1− α)eK − eK−1

= ecα+ ec(1− α)
αec

1− (1− α)ec
− e−1 αec

1− (1− α)ec

=
αec(1− e−1)

1− (1− α)ec
> 0,

we get that h(y) ≥ 0 for y ∈ [0,K − 1]. Thus, recalling (5.3.12), for x ∈ E
such that x < cn − 1 ≤ K − 1, we get ewn+1(x) = ex = ex ∧ ecn+1 , which
shows (5.3.11). Hence, letting n→∞ in (5.3.11) and recalling Theorem 3.2.6,
we get w(x) = x ∧K, which concludes the proof of this step.

Step 3. We show that w(x) = x, x ∈ E, for α ∈ [0, 1 − e−c−1]. Recalling
Theorem 3.2.6, it is enough to show wn(x) = x, n ∈ N, x ∈ E, where the
sequence (wn) is recursively defined as

w0(x) := x, x ∈ E,
ewn+1(x) := ex ∧ ec(αewn(0) + (1− α)ewn(x+1)), n ∈ N, x ∈ E.

Noting that w0(0) = 0 and recalling that by Proposition 3.2.4, the map
n 7→ wn(0) is decreasing, we get wn(0) = 0, n ∈ N. Thus, we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ewn(x+1)), n ∈ N, x ∈ E. (5.3.13)

To show wn(x) = x, n ∈ N, x ∈ E, we proceed by induction. The claim for
n = 0 follows directly from the definition. Now, let us assume that, for some
n ∈ N, we get wn(x) = x, x ∈ E. Then, recalling (5.3.13), we get

ewn+1(x) = ex ∧ ec(α+ (1− α)ex+1), x ∈ E.
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Also, recalling (5.3.9), (5.3.10), and the following discussion, we get

ec(α+ (1− α)ex+1) ≥ ex, x ∈ E.

Thus, for any n ∈ N and x ∈ E, we get wn(x) = x. Letting n → ∞ and
recalling Theorem 3.2.6, we get w(x) = x, x ∈ E, which concludes the proof
of this step.

Step 4. We show that w(x) = x ∧K, x ∈ E, for α ∈ (1 − e−c−1, 1]. Using a
discrete time version of Proposition 3.1.1, we get

w(x) = inf
τ∈T 0

lim inf
n→∞

lnEx
[
ec(τ∧n)+Xτ∧n

]
, x ∈ E. (5.3.14)

Thus, recalling that, for α ∈ (1 − e−c−1, 1], we get w(x) = x ∧ K and
w(x) ≤ w(x), x ∈ E, it is enough to show

lim inf
n→∞

Ex
[
ec(τK∧n)+XτK∧n

]
= ex∧K , x ∈ E, (5.3.15)

where τK = inf{n ∈ N : Xn ∈ [0,K]}. Indeed, combining (5.3.14) with (5.3.15),
for any x ∈ E, we get

x ∧K = w(x) ≤ w(x) ≤ lim inf
n→∞

lnEx
[
ec(τK∧n)+XτK∧n

]
= x ∧K,

which proves w(x) = x ∧K, x ∈ E.

To show (5.3.15), note that, for x ∈ [0,K], we get Px[τK = 0] = 1, and

consequently Ex
[
ec(τK∧n)+XτK∧n

]
= ex = ex∧K , n ∈ N. For x > K, we get

Px[τK = inf{n ∈ N : Xn = 0}] = 1.

Thus, for x > K and n ∈ N∗, we get

Ex
[
ec(τK∧n)+XτK∧n

]
=

n∑
k=1

Ex
[
1{τK=k}e

ck+Xk
]

+
∞∑

k=n+1

Ex
[
1{τK=k}e

cn+Xn
]

=
n∑
k=1

α(1− α)k−1eck +
∞∑

k=n+1

α(1− α)k−1ecn+x+n

=
n∑
k=1

α(1− α)k−1eck + (1− α)ne(c+1)nex. (5.3.16)
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Note that from the assumption α ∈ (1 − e−c−1, 1], we get (1 − α)ec+1 < 1,
hence we get (1− α)ne(c+1)n → 0 as n→∞. Thus, recalling (5.3.16) and the
fact that eK = αec

1−(1−α)ec , for x > K, we get

lim inf
n→∞

Ex
[
ec(τK∧n)+XτK∧n

]
= lim inf

n→∞

(
n∑
k=1

α(1− α)k−1eck + (1− α)ne(c+1)nex

)

= lim
n→∞

n∑
k=1

α(1− α)k−1eck = eK , (5.3.17)

which concludes the proof of (5.3.15). �

Remark 5.3.2. Let us now comment on the link between the uniform integrabil-
ity condition from Theorem 3.2.11 and the dynamics studied in Example 5.3.1.
More specifically, let τ := inf{n ∈ N : w(Xn) = G(Xn)} and let

Z(n) := ecn+Xn , n ∈ N. (5.3.18)

As we show now, the process (Z(τ ∧ n)), n ∈ N, is Px-uniformly integrable if
and only if α ∈ [0, 1 − e−c] ∪ (1 − e−c−1, 1] or x ≤ K. Thus, in this case, the
uniform integrability of (Z(τ ∧n)), n ∈ N, is equivalent to the identity w ≡ w;
cf. Theorem 3.2.11.

Using a discrete time version of Lemma 3.1.2, we get that the uniform
integrability of (Z(τ ∧ n)), n ∈ N, is equivalent to

lim
n→∞

Ex[Z(τ ∧ n)] = Ex[Z(τ)], x ∈ E, (5.3.19)

provided that we get τ ∈ T 0
x and Ex[Z(τ)] < ∞. For α ∈ [0, 1 − e−c], we get

w(x) = x, x ∈ E, hence τ ≡ 0 Px a.s., which directly implies (5.3.19). Next,
for α ∈ (1− e−c, 1], we get w(x) = x∧K, x ∈ E, hence, for any x ∈ E, we get

τ = inf{n ∈ N : Xn ∈ [0,K]} Px a.s.

In particular, for x ∈ [0,K], we get τ = 0 Px a.s. and (5.3.19) holds.
Also, for x > K, we get τ = inf{n ∈ N : Xn = 0} Px a.s. Then, we get
Px[τ = n] = α(1− α)n−1, x > K, n ∈ N∗, and τ ∈ T 0

x , x > K. Hence, noting
that Xτ = 0 and using the fact that α ∈ (1− e−c, 1] implies ec(1−α) < 1, for
any x > K, we get

Ex[Z(τ)] = Ex[ecτ+Xτ ] =

∞∑
n=1

ecnα(1− α)n−1 =
αec

1− (1− α)ec
= eK . (5.3.20)
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Also, note that from (5.3.17), for α ∈ (1− e−c−1, 1] and x > K, we get

lim
n→∞

Ex[Z(τ ∧ n)] = lim
n→∞

Ex
[
ec(τ∧n)+Xτ∧n

]
= eK .

Thus, we get (5.3.19) for α ∈ [0, 1− e−c]∪ (1− e−c−1, 1] or x ≤ K. Finally, we
show that, for α ∈ (1−e−c, 1−e−c−1] and x > K, we get that (Z(τ∧n)), n ∈ N,
is not Px-uniformly integrable. Recalling (5.3.16) and noting that τ = τK Px
a.s., for x > K, for any n ∈ N∗, we get

Ex[Z(τ ∧ n)] = Ex
[
ec(τ∧n)+Xτ∧n

]
=

n∑
k=1

α(1− α)k−1eck + (1− α)ne(c+1)nex. (5.3.21)

Also, note that from α ∈ (1 − e−c, 1 − e−c−1] we get (1 − α)ec < 1 and
(1 − α)ec+1 ≥ 1. Thus, limn→∞

∑n
k=1 α(1 − α)k−1eck = αec

1−(1−α)ec = eK and

limn→∞(1 − α)ne(c+1)nex > 1. Consequently, recalling (5.3.20) and (5.3.21),
we get

Ex[Z(τ)] = eK < eK + 1 < lim
n→∞

Ex[Z(τ ∧ n)].

Thus, for α ∈ (1 − e−c, 1 − e−c−1] and x > K, we get that (5.3.19) does not
hold, which concludes the proof. ♦

Remark 5.3.3. Now, we show that the uniform integrability condition from Re-
mark 5.3.2 cannot be replaced by the related condition with the stopping time
corresponding to w. More specifically, let τ := inf{n ∈ N : w(Xn) = G(Xn)}
and let (Z(n)) be given by (5.3.18). As we show now, the process (Z(τ ∧ n)),
n ∈ N, is Px-uniformly integrable for any α ∈ [0, 1] and x ∈ E. In particular,
for α ∈ (1−e−c, 1−e−c−1], we get that the uniform integrability of (Z(τ ∧n)),
n ∈ N, does not imply the equality of w and w; cf. Remark 3.2.12.

As in Remark 5.3.2, we show that, for any α ∈ [0, 1], we get

lim
n→∞

Ex[Z(τ ∧ n)] = Ex[Z(τ)]. x ∈ E, (5.3.22)

Note that, for α ∈ [0, 1− e−c−1], we get w(x) = x, x ∈ E, thus τ = 0, Px a.s.
and (5.3.22) holds. Also, for α ∈ (1 − e−c−1, 1] we get w ≡ w, hence τ ≡ τ .
Next, recall that, by Remark 5.3.2, for α ∈ (1 − e−c−1, 1] and x ∈ E, we get
limn→∞ Ex[Z(τ ∧ n)] = Ex[Z(τ)]. Thus, we get (5.3.22). ♦

Remark 5.3.4. In this remark we show how to construct a solution to the
Bellman equation (5.3.3), which is not identically equal to w and w. We focus
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on the dynamics from Example 5.3.1 with α ∈ (1 − e−c, 1 − e−c−1]. Let us
define the map w ∈M+(E) by

w(x) :=

{
x, x ∈ [0,K] ∪ N,
K, otherwise.

We show that w is a solution to the Bellman equation (5.3.3). Indeed, noting
that w(x) = w(x), x ∈ N, where w is given by (5.3.2), and recalling that w is
a solution to (5.3.3), we get

ew(x) = ew(x) = ex ∧ ec
(
αew(0) + (1− α)ew(x+1)

)
= ex ∧ ec

(
αew(0) + (1− α)ew(x+1)

)
, x ∈ N.

Similarly, noting that w(x) = w(x), x ∈ E \N, where w is given by (5.3.1), we
get

ew(x) = ew(x) = ex ∧ ec
(
αew(0) + (1− α)ew(x+1)

)
= ex ∧ ec

(
αew(0) + (1− α)ew(x+1)

)
, x ∈ E \ N.

Hence, w is a solution to (5.3.3), which is different from w and w; cf. Theo-
rem 3.2.6. Also, note that w is discontinuous. In fact, using similar logic, we
may construct infinitely many (discontinuous) solutions to (5.3.3). ♦

5.3.2 Continuous time case

In this section, we give an example for the non-uniqueness of a solution to the
continuous time Bellman equation (3.4.3). The example takes the form of a
piecewise constant Markov process, where the jump measure is linked to the
dynamics studied in Example 5.3.1. Using a suitable identification, we show
that the corresponding Bellman equation admits multiple solutions.

Example 5.3.5. In this example we use the dynamics from Example 5.3.1
to get a piecewise deterministic (piecewise constant) continuous time Markov
process X with values in the state space E := [0,+∞). The process construc-
tion follows the logic of Example 5.2.1, thus we provide only an outline.

First, let (Yn) be a discrete time Markov process with the dynamics studied
in Example 5.3.1, i.e.

Px[Y1 = 0] = α, Px[Y1 = x+ 1] = 1− α, x ∈ E, (5.3.23)
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for some α ∈ [0, 1]. Also, let (Tn)∞n=1 be an increasing sequence of non-negative
random variables. We set T0 ≡ 0 and assume that the increments (Tn+1−Tn),
n ∈ N, are exponentially distributed with the rate parameter β > 0. Also, we
assume that the jump times (Tn) are independent of (Yn). Finally, we define
the process X as Xt := Yn for t ∈ [Tn, Tn+1). We refer to Davis (1993) for a
more detailed discussion on the process construction.

By analogy to Example 5.3.1, we set g ≡ C with C ∈ (0, β) and G(x) = x,
x ∈ E. Also, we consider the continuous time optimal stopping problem

w(x) := inf
τ∈Tx

lnEx
[
eCτ+Xτ

]
, x ∈ E. (5.3.24)

Following (3.4.3), with this problem we associate the continuous time Bellman
equation

ew(x) = inf
τ∈T

Ex
[
eC(τ∧t)+1{τ<t}Xτ+1{τ≥t}w(Xt)

]
, w ∈M+(E), x ∈ E, t ≥ 0.

(5.3.25)
We show that this equation admits multiple solutions. Before we present a
detailed argument, let us explain the intuition. Since C > 0, it is optimal to
stop the process in (5.3.24) only at the times when the process (Xt) is subject
to a jump. Thus, (5.3.24), at least formally, should be equivalent to

w(x) = inf
ν∈T 0

x

lnEx[eCTν+XTν ] = inf
ν∈T 0

x

lnEx[eCTν+Yν ], x ∈ E.

After a suitable embedding, this could be seen as a discrete time optimal
stopping problem with the corresponding Bellman equation of the form

ew(x) = min
(
ex,Ex

[
eCT1+w(Y1)

])
, w ∈M+(E), x ∈ E. (5.3.26)

Using the independence of (Yn) and (Tn), and the fact that T1 is exponentially
distributed, for any w ∈M+(E) and x ∈ E, we get

Ex
[
eCT1+w(Y1)

]
=

∫ ∞
0

βe−t(β−C)dt
(
αew(0) + (1− α)ew(x+1)

)
=

β

β − C

(
αew(0) + (1− α)ew(x+1)

)
.

Thus, setting c := ln
(

β
β−C

)
, we get that (5.3.26) could be rewritten as

ew(x) = min
(
ex, ec

(
αew(0) + (1− α)ew(x+1)

))
, w ∈M+(E), x ∈ E.
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Since, by Example 5.3.1, this equation admits multiple solutions, we should
also get multiple solutions to (5.3.25).

Now, we provide a more detailed argument. As formalisation of the pre-
ceding intuition turned out to be rather cumbersome, we use a more direct
method. First, we show that Assumptions (A1)–(A4) are satisfied in this

model. Also, we set c := ln
(

β
β−C

)
and show that, for α ∈ [0, 1 − e−c−1], the

map w(x) := x, x ∈ E, is a solution to (5.3.25). Next, we show that, for
α ∈ (1− e−c, 1], we get w(x) ≤ x∧K, x ∈ E, where w is given by (5.3.24) and

K := ln
(

αec

1−(1−α)ec

)
. Thus, recalling that, by Theorem 3.4.3, the map w is a

solution to (5.3.25), we get multiple solutions to the continuous time Bellman
equation. More specifically, we get that, for α ∈ (1 − e−c, 1 − e−c−1], both w
and w are solutions to (5.3.25), but for x > K we get w(x) ≤ K < x = w(x).

For transparency, we split the rest of the argument into three steps: (1)
proof that Assumptions (A1)–(A4) are satisfied; (2) proof that w(x) := x,
x ∈ E, is a solution to (5.3.25) for α ∈ [0, 1−e−c−1]; (3) proof that w(x) ≤ x∧K,
x ∈ E, for α ∈ (1− e−c, 1].

Step 1. We show that Assumptions (A1)–(A4) are satisfied in this model.
First, using Theorem 25.5 and Theorem 27.6 from Davis (1993), as in Ex-
ample 5.2.1, we get that ((Xt)t≥0, (Px)x∈E) is a continuous time standard
Cb-Feller-Markov process with values in (E, E). Second, we note that As-
sumption (A1) follows directly from the fact that g(x) = C > 0, x ∈ E and
G(x) = x, x ∈ E. Third, we use Lemma 5.1.1 to show that Assumptions (A2)–
(A3) are satisfied. Let T ≥ 0, ζT := supt∈[0,T ] e

Xt , and K ⊂ E be a compact
set. We show that

lim
m→∞

sup
x∈K

Ex
[
ζT 1{ζT≥em}

]
= 0, (5.3.27)

which, combined with Lemma 5.1.1, implies (A2)–(A3). Note that, for any
x ∈ E and n ∈ N, on the event {T ∈ [Tn, Tn+1)}, we get ζT ≤ ex+n Px a.s.
Thus, setting LK := supx∈K |x|, for any m ∈ N, we get

sup
x∈K

Ex
[
ζT 1{ζT≥em}

]
= sup

x∈K
Ex

[ ∞∑
n=0

1{T∈[Tn,Tn+1)}ζT 1{ζT≥em}

]

≤ sup
x∈K

Ex

[ ∞∑
n=0

1{T∈[Tn,Tn+1)}e
x+n1{ex+n≥em}

]

≤ sup
x∈K

∞∑
n=0

Px [T ∈ [Tn, Tn+1)] eLK+n1{n≥m−LK}.

(5.3.28)
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Next, recalling that (Tn+1 − Tn), n ∈ N, follows the exponential distribution
with the rate parameter β, we get that Tn, n ∈ N∗, follows the Erlang distri-
bution with the shape parameter n and the rate parameter β. Hence, for any
x ∈ E, n ∈ N∗, and s ≥ 0, we get

Px[Tn ≤ s < Tn+1] = Px[Tn ≤ s, s− Tn < Tn+1 − Tn]

=

∫ s

0

(∫ ∞
s−t1

βe−βt2dt2

)
βntn−1

1 e−βt1

(n− 1)!
dt1

=

∫ s

0
e−β(s−t1)β

ntn−1
1 e−βt1

(n− 1)!
dt1 = e−βs

(βs)n

n!
; (5.3.29)

also, recalling that T0 ≡ 0, we get that this formula is valid for n = 0 as well.
Thus, recalling (5.3.28) and denoting by bac := sup{k ∈ Z : k ≤ a} the integer
part of a ∈ R, for m ≥ LK , we get

sup
x∈K

Ex
[
ζT 1{ζT≥em}

]
≤

∞∑
n=bm−Lkc

e−βT
(βT )n

n!
eLK+n

= eLK−βT
∞∑

n=bm−LKc

(βTe)n

n!
.

Noting that
∑∞

n=0
(βTe)n

n! = eβTe <∞, we get limm→∞
∑∞

n=bm−LKc
(βTe)n

n! = 0,
which shows (5.3.27). Thus, recalling Lemma 5.1.1, we get that Assump-
tions (A2)–(A3) are satisfied. Finally, exactly as in Example 5.2.1, we show
that Assumption (A4) is satisfied; see Step 1 in the argument in Example 5.2.1
for details. This concludes the proof of this part.

Step 2. W show that, for α ∈ [0, 1 − e−c−1], the map w(x) := x, x ∈ E, is
a solution to (5.3.25). Note that it is enough to show that, for any x ∈ E,
the process Z(t) := eCt+Xt , t ≥ 0, is a Px-submartingale. Indeed, from the
submartingale property, using Doob’s optional stopping theorem, for x ∈ E,
t ≥ 0, and τ ∈ T , we get ex ≤ Ex

[
eC(τ∧t)+Xτ∧t

]
. Also, noting that, for any

x ∈ E, the process Z(0 ∧ t) = eX0 , t ≥ 0, is a Px-martingale, we get

ew(x) = ex = inf
τ∈T

Ex
[
eC(τ∧t)+Xτ∧t

]
= inf

τ∈T
Ex
[
eC(τ∧t)+1{τ<t}Xτ+1{τ≥t}w(Xt)

]
, x ∈ E, t ≥ 0,

which shows that w(x) = x, x ∈ E, is a solution to (5.3.25).
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Let us now show that, for any x ∈ E, the process Z(t) := eCt+Xt , t ≥ 0,
is a Px-submartingale. Fix t, s ≥ 0 and note that, using the Markov property,
we get

Ex
[
eC(t+s)+Xt+s |Ft

]
= eC(t+s)Ex[eXt+s |Ft] = eCteCsEXt [eXs ], x ∈ E.

Thus, to conclude the proof of the submartingale property, it is enough to
show

eCsEx[eXs ] ≥ ex, x ∈ E. (5.3.30)

To show this, note that, using the independence of (Tn) and (Yn), for any
x ∈ E, we get

Ex[eXs ] =
∞∑
n=0

Ex[1{Tn≤s<Tn+1}e
Xs ]

=
∞∑
n=0

Ex[1{Tn≤s<Tn+1}e
Yn ] =

∞∑
n=0

P[Tn ≤ s < Tn+1]Ex[eYn ]. (5.3.31)

Now, we show that, for any n ∈ N∗, we get

Ex[eYn ] =
n−1∑
k=0

α(1− α)kek + (1− α)nex+n, x ∈ E. (5.3.32)

For n = 1, directly from (5.3.23), we get Ex[eY1 ] = αe0 + (1− α)ex+1, x ∈ E,
and (5.3.32) holds. Let us assume that the claim holds for some n ∈ N∗. Then,
using the Markov property, we get

Ex
[
eYn+1

]
= Ex

[
EY1

[
eYn
]]

= Ex

[
n−1∑
k=0

α(1− α)kek + (1− α)neY1+n

]

=

n−1∑
k=0

α(1− α)kek + α(1− α)nen + (1− α)n+1ex+n+1, x ∈ E,

which shows (5.3.32). Thus, combining (5.3.31) with (5.3.29) and (5.3.32),
and noting that Ex[eY0 ] = ex, x ∈ E, for any x ∈ E, we get

Ex[eXs ] = e−βsex +
∞∑
n=1

e−βs
(βs)n

n!

(
n−1∑
k=0

α(1− α)kek + (1− α)nex+n

)
.

(5.3.33)
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Now, we consider two cases and use separate arguments for α = 1 − e−1 and
for α ∈ [0, 1− e−c−1]\{1− e−1}. If α = 1− e−1, then (1−α)e = 1, and we get

Ex[eXs ] = e−βsex +

∞∑
n=1

e−βs
(βs)n

n!
(nα+ ex)

= αβse−βs
∞∑
n=0

(βs)n

n!
+ exe−βs

∞∑
n=0

(βs)n

n!

= αβs+ ex, x ∈ E.

Thus, eCsEx[eXs ] ≥ ex, x ∈ E, which shows (5.3.30) for α = 1 − e−1. Let
us now show that, for α ∈ [0, 1 − e−c−1] \ {1 − e−1}, we also get (5.3.30).
Recalling (5.3.33), for any x ∈ E, we get

Ex[eXs ] = e−βsex +
∞∑
n=1

e−βs
(βs)n

n!

(
α

1− (1− α)nen

1− (1− α)e
+ (1− α)nex+n

)

=
αe−βs

1− (1− α)e

( ∞∑
n=1

(βs)n

n!
−
∞∑
n=1

(βs(1− α)e)n

n!

)

+ e−βsex
∞∑
n=0

(βs(1− α)e)n

n!

=
αe−βs

1− (1− α)e

(
eβs − eβs(1−α)e

)
+ exeβs((1−α)e−1). (5.3.34)

Also, noting that the condition α ∈ [0, 1−e−c−1]\{1−e−1} implies (1−α)e 6= 1,
we get

αe−βs

1− (1− α)e

(
eβs − eβs(1−α)e

)
≥ 0. (5.3.35)

Next, recalling that ec = β
β−C , from the assumption α ≤ 1 − e−c−1, we get

α ≤ 1− e−1 + e−1C
β , which shows (1−α)e ≥ 1− C

β . Thus, combining (5.3.34)
with (5.3.35), we get

eCsEx[eXs ] ≥ eCsexeβs((1−α)e−1) ≥ eCsexeβs(−
C
β

)
= ex,

which concludes the proof of (5.3.30).

Step 3. We show that w(x) ≤ x ∧K, x ∈ E, for α ∈ (1 − e−c, 1], where w is

given by (5.3.24) and K := ln
(

αec

1−(1−α)ec

)
. Note that it is enough to show

lnEx
[
eCτK+XτK

]
= x ∧K, x ∈ E, (5.3.36)
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where τK := inf{t ≥ 0: Xt ∈ [0,K]}. Note that, for x ∈ [0,K], we get
τK ≡ 0 Px a.s., which directly implies (5.3.36). Also, for x > K, we get
Px [τK = inf{t ≥ 0: Xt = 0}] = 1. Thus, noting that XτK = 0, for x > K, we
get

Ex
[
eCτK+XτK

]
=

∞∑
n=1

Ex
[
eCTn1{τK=Tn}

]
=
∞∑
n=1

Ex
[
eCTn1{Y1=x+1,Y2=x+2,...,Yn−1=x+n−1,Yn=0}

]
=

∞∑
n=1

Ex
[
eCTn

]
(1− α)n−1α. (5.3.37)

Next, recall that Tn, n ∈ N∗, follows the Erlang distribution with the shape
parameter n and the rate parameter β, thus its moment generating function is

given byMTn(t) := E[etTn ] =
(

1− t
β

)−n
, t < β. Also, recalling that ec = β

β−C ,

noting that eK = αec

1−(1−α)ec = αβ
αβ−C , and using (5.3.37), for x > K, we get

Ex
[
eCτK+XτK

]
=

∞∑
n=1

(
1− C

β

)−n
(1− α)n−1α =

αβ

αβ − C
= eK ,

where, to find the infinite sum, we used the fact that α > 1 − e−c = C
β

implies 1−α
1−C

β

< 1. Thus, recalling (5.3.36), we get w(x) ≤ x ∧K, x ∈ E, for

α ∈ (1− e−c, 1], which concludes the proof. �
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Appendix A

Auxiliary results

In this chapter, we discuss some auxiliary results used in the thesis. In partic-
ular, in Section A.1, we present some properties of the discrete time optimal
stopping Bellman operator; this is used in Section 3.2. Next, in Section A.2,
we review the properties of the Snell envelope, which facilitate the analysis in
Section 3.3. Also, in Section A.3, we discuss long-run dyadic impulse control
problems; this is used in Section 4.3. Finally, in Section A.4, we collect some
properties of the Multiplicative Poisson Equation and the associated change
of measure transformation. This is extensively used in Section 4.3.

Some of the results presented in this appendix are relatively standard and
are derived from the literature. In this case, instead of providing proofs, we
give the specific references. However, sometimes we need to adjust the results
to our setting, and in this case we provide more detailed arguments.

A.1 Discrete time Bellman operator

In this section, we present some additional properties of the discrete time
optimal stopping Bellman operator given by (3.2.6). In particular, we show
that the iterates of this operator could be associated with a suitable optimal
stopping problem. This is used in the proof of Proposition 3.2.4.

In this section ((Xn)n∈N, (Px)x∈E)) is a discrete time standard Markov
process on (Ω,F ,F) with values in (E, E); note that here we do not need the
Feller property. Let g ∈ Cb(E), G ∈ C+(E), and assume (A2′). Note that we
consider a generic g ∈ Cb(E). i.e. we do not need the non-negativity condition;
cf. Assumption (A1). Also, Assumption (A3′) is not used in this section.

Recall the Bellman operator S given by (3.2.6). In the following, we fix
some map h ∈ C+(E) satisfying 0 ≤ h(x) ≤ G(x), x ∈ E, and recursively
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define the sequence of functions (wn)n∈N given by

w0(x) := h(x), x ∈ E,
wn+1(x) := lnSewn(x), n ∈ N, x ∈ E. (A.1.1)

Note that setting h ≡ 0, we recover the sequence (wn) given by (3.2.10).
Similarly, for h ≡ G, we get that wn coincides with wn given by (3.2.11).

In Proposition A.1.1 we give a probabilistic interpretation of the sequence
(wn). This is a relatively standard result; see e.g. Section 2.2 in Shiryaev
(1978). However, in the literature, usually it is assumed that g ≡ 0 and
h ≡ G. Thus, for completeness, we provide a more detailed argument.

Proposition A.1.1. Let the sequence (wn) be given by (A.1.1). Then, we get

wn(x) = inf
τ≤n

lnEx
[
e
∑τ−1
i=0 g(Xi)+1{τ<n}G(Xτ )+1{τ=n}h(Xn)

]
, n ∈ N, x ∈ E.

(A.1.2)
Also, for any n ∈ N and x ∈ E, the stopping time

τn := inf {k ∈ N : wn−k(Xk) = G(Xk)} ∧ n

is optimal for wn(x). Moreover, for any n ∈ N and x ∈ E, the process

zn(k) := e
∑k−1
i=0 g(Xi)+wn−k(Xk), k = 0, . . . , n

is a Px-submartingale and (zn(τn ∧ k)), k = 0, . . . , n, is a Px-martingale.

Proof. Let n ∈ N be fixed. First, we show the submartingale property of the
process (zn(k)), k = 0, . . . , n. Directly from the fact ewn−k(x) = Sewn−k−1(x),
k = 0, . . . , n − 1, x ∈ E, we get eg(x)Ex

[
ewn−k−1(X1)

]
≥ ewn−k(x), x ∈ E,

k = 0, . . . , n − 1. Thus, using the Markov property, for any x ∈ E and
k = 0, . . . , n− 1, we get

Ex [zn(k + 1)|Fk] = e
∑k−1
i=0 g(Xi)eg(Xk)EXk

[
ewn−k−1(X1)

]
≥ e

∑k−1
i=0 g(Xi)ewn−k(Xk) = zn(k),

which shows that (zn(k)), k = 0, . . . , n, is a Px-submartingale.
Second, we show the martingale property of the process (zn(τn ∧ k)),

k = 0, . . . , n. Note that, from (A.1.1), for any k = 0, . . . , n − 1, on the event
{τn > k}, we get wn−k(Xk) < G(Xk) and, consequently, we get

ewn−k(Xk) = eg(Xk)EXk
[
ewn−k−1(X1)

]
.
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Thus, for any x ∈ E and k = 0, . . . , n− 1, we get

Ex[zn(τn ∧ (k + 1))|Fk]

= 1{τn≤k}zn(τn) + 1{τn>k}e
∑k
i=0 g(Xi)Ex

[
ewn−k−1(Xk+1)|Fk

]
= 1{τn≤k}zn(τn) + 1{τn>k}e

∑k−1
i=0 g(Xi)eg(Xk)EXk

[
ewn−k−1(X1)

]
= 1{τn≤k}zn(τn ∧ k) + 1{τn>k}e

∑τn∧k−1
i=0 g(Xi)ewn−k(Xτn∧k)

= zn(τn ∧ k),

which shows that (zn(k ∧ τn)), k = 0, . . . , n, is a Px-martingale.

Finally, we show (A.1.2) and the optimality of τn. Using the submartin-
gale property of (zn), Doob’s optional stopping theorem, and the facts that
wn−k(·) ≤ G(·), k = 0, . . . , n, and w0 ≡ h, for any stopping time τ ≤ n, we get

ewn(x) = Ex [zn(0)] ≤ Ex [zn(τ)]

= Ex
[
e
∑τ−1
i=0 g(Xi)+1{τ<n}wn−τ (Xτ )+1{τ=n}w0(Xn)

]
≤ Ex

[
e
∑τ−1
i=0 g(Xi)+1{τ<n}G(Xτ )+1{τ=n}h(Xn)

]
, x ∈ E.

Consequently, we get

ewn(x) ≤ inf
τ≤n

Ex
[
e
∑τ−1
i=0 g(Xi)+1{τ<n}G(Xτ )+1{τ=n}h(Xn)

]
, x ∈ E. (A.1.3)

Also, using the martingale property of (zn(τn ∧ k)) and the fact that, on the
event {τn < n}, we get wn−τn(Xτn) = G(Xτn), we also get

ewn(x) = Ex [zn(n ∧ τn)]

= Ex
[
e
∑τn−1
i=0 g(Xi)+1{τn<n}wn−τn (Xτn )+1{τn=n}w0(Xn)

]
= Ex

[
e
∑τn−1
i=0 g(Xi)+1{τn<n}G(Xτn )+1{τn=n}h(Xn)

]
, x ∈ E.

Thus, recalling (A.1.3), we get

ewn(x) = inf
τ≤n

Ex
[
e
∑τ−1
i=0 g(Xi)+1{τ<n}G(Xτ )+1{τ=n}h(Xn)

]
= Ex

[
e
∑τn−1
i=0 g(Xi)+1{τn<n}G(Xτn )+1{τn=n}h(Xn)

]
, x ∈ E,

which concludes the proof.
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A.2 Snell envelope

In this section, we present some auxiliary results related to the Snell envelopes
corresponding to continuous time optimal stopping problems. In particular,
we show a martingale characterisation of the value process and provide for-
mulae for ε-optimal and optimal stopping times. This is used in the proof of
Theorem 3.3.2. Some of the results presented in this section are based on Fa-
keev (1970, 1971); see also El Karoui (1981) and Appendix D in Karatzas and
Shreve (1998b) for a similar discussion.

We start with selected basic properties of the Snell envelope. To simplify
the narrative, we state them in a generic, possibly non-Markovian setting.
More specifically, let (Z(t)), t ≥ 0, be a right-continuous stochastic process
on some filtered probability space (Ω,F , (Ft)t≥0,P), adapted to the filtration
(Ft)t≥0, which satisfies usual conditions. We assume that Z satisfies

E
[
sup
t≥0
|Z(t)|

]
<∞. (A.2.1)

We define the Snell envelope of Z by

z(t) := ess inf
τ≥t

E [Z(τ)|Ft] , t ≥ 0, (A.2.2)

where, for any t ≥ 0, the essential infimum is taken over all P-a.s. finite
stopping times τ satisfying τ ≥ t. Typically, the Snell envelope is the largest
submartingale dominated by the process (Z(t)), t ≥ 0. Also, it facilitates the
analysis of optimal and ε-optimal stopping times for the optimal stopping
problem associated with (Z(t)), t ≥ 0.

In Theorem A.2.1 we collect the properties of (z(t)), t ≥ 0, which are used
in this thesis. For the proof, see e.g. Theorem 2 and Theorem 4 in Fakeev
(1970) or Proposition D.2 and Theorem D.7 in Karatzas and Shreve (1998b).

Theorem A.2.1. Let the process (z(t)), t ≥ 0, be given by (A.2.2). Then:

(1) The process (z(t)), t ≥ 0, is a submartingale.

(2) For any ε > 0, the stopping time

τε := inf{t ≥ 0 : z(t) ≥ −ε+ Z(t)}

is ε-optimal for infτ E
[
Z(τ)1{τ<∞} + lim infT→∞ Z(T )1{τ=∞}

]
.

(3) We get E[z(0)] = infτ E
[
Z(τ)1{τ<∞} + lim infT→∞ Z(T )1{τ=∞}

]
.
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Remark A.2.2. Note that the specific form of the optimal stopping prob-
lem in Theorem A.2.1 is aligned with (3.1.6). More specifically, the term
lim infT→∞ Z(T )1{τ=∞} allows for a possible stopping at infinity; see e.g.
Equation (2) in Fakeev (1970) for a further discussion. ♦

Remark A.2.3. Theorem A.2.1 gives a characterisation of ε-optimal stopping
times for the stopping problem related to Z. Under the additional continuity
assumption, it is also possible to get an optimal stopping time; see point (b)
of Theorem 4 in Fakeev (1970). ♦

The next lemma provides an efficient procedure for finding the Snell enve-
lope. For the proof, see the unnumbered lemma in Fakeev (1971). Note that
in Lemma A.2.4, to simplify the notation, we use Q ⊂ R to denote the set of
rational numbers. Its countability guarantees that the maps defined in (A.2.3)
are measurable.

Lemma A.2.4. Let the sequence (hn)n∈N be given recursively by

h0(t) := Z(t), t ≥ 0,

hn+1(t) := inf
s≥t
s∈Q

E [hn(s)|Ft] , n ∈ N, t ≥ 0. (A.2.3)

Also, let (z(t)), t ≥ 0, be given by (A.2.2). Then, for any t ≥ 0, we get
z(t) = limn→∞ hn(t) P a.s.

Let us now show how to use Theorem A.2.1 and Lemma A.2.4 in the setting
considered in Chapter 3. Let ((Xt)t≥0, (Px)x∈E) be a continuous time standard
Markov process on (Ω,F ,F) with values in (E, E). Let f ∈ Cb(E), G ∈ C+(E),
and h ∈ C+(E) be such that 0 ≤ h(x) ≤ G(x), x ∈ E. Let us assume (A2)
and, for any T ≥ 0, define

ZT (t) := exp

(∫ t∧T

0
f(Xs)ds+ 1{t<T}G(Xt) + 1{t≥T}h(XT )

)
, t ≥ 0.

(A.2.4)
Recalling Assumption (A2), we get that (A.2.1) is satisfied for the process
(ZT (t)), t ≥ 0, with fixed T ≥ 0. Next, for any T ≥ 0, let us define

wT (x) := inf
τ≤T

lnEx [ZT (τ)] , x ∈ E. (A.2.5)

Note that setting f ≡ g and h ≡ 0, we get that wT coincides with wT
from (3.3.1). Similarly, for f ≡ g and h ≡ G we get that wT is equal to
wT from (3.3.2).

Now, using Lemma A.2.4, we characterise the Snell envelope of (ZT (t)).
The proof is partially based on the argument used in Theorem 1 in Fakeev
(1971).
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Proposition A.2.5. For any T ≥ 0, let (ZT (t)) and wT be given by (A.2.4)
and (A.2.5), respectively. Then, for any t ∈ [0, T ] and x ∈ E, we get

ess inf
τ≥t

Ex [ZT (τ)|Ft] = e
∫ t
0 f(Xs)ds+wT−t(Xt) Px a.s. (A.2.6)

Proof. Let us recursively define the family of functions

W1(t, x) := inf
s∈[0,t]
s∈Q∪{t}

Ex
[
e
∫ s
0 f(Xu)du+1{s<t}G(Xs)+1{s≥t}h(Xt)

]
, t ≥ 0, x ∈ E,

Wn+1(t, x) := inf
s∈[0,t]
s∈Q∪{t}

Ex
[
e
∫ s
0 f(Xu)duWn(t− s,Xs)

]
, n ∈ N∗, t ≥ 0, x ∈ E,

where Q denotes the set of rational numbers. Also, let us fix some T ≥ 0 and
x ∈ E, and define a version of (hn) from (A.2.3) corresponding to (ZT (t)) by

hT0 (t) := ZT (t), t ∈ [0, T ],

hTn+1(t) := inf
s∈[t,T ]
s∈Q∪{T}

Ex
[
hTn (s)|Ft

]
, n ∈ N, t ∈ [0, T ].

We show that, for any t ∈ [0, T ] and n ∈ N∗, we get

hTn (t) = e
∫ t
0 f(Xu)duWn(T − t,Xt) Px a.s. (A.2.7)

We proceed by induction. For n = 1, using the Markov property, we get

hT1 (t) = inf
s∈[t,T ]
s∈Q∪{T}

Ex
[
e
∫ s
0 f(Xu)du+1{s<T}G(Xs)+1{s≥T}h(XT )|Ft

]
= e

∫ t
0 f(Xu)du inf

s∈[0,T−t]
s∈Q∪{T−t}

EXt
[
e
∫ s
0 f(Xu)du+1{s<T−t}G(Xs)+1{s≥T−t}h(XT−t)

]
= e

∫ t
0 f(Xu)duW1(T − t,Xt) Px a.s., t ∈ [0, T ].

Let us now assume that (A.2.7) holds for some n ∈ N∗. Then, we get

hTn+1(t) = inf
s∈[t,T ]
s∈Q∪{T}

Ex
[
hTn (s)|Ft

]
= inf

s∈[t,T ]
s∈Q∪{T}

Ex
[
e
∫ s
0 f(Xu)duWn(T − s,Xs)|Ft

]
= e

∫ t
0 f(Xu)du inf

s∈[0,T−t]
s∈Q∪{T−t}

EXt
[
e
∫ s
0 f(Xu)duWn(T − t− s,Xs)

]
= e

∫ t
0 f(Xu)duWn+1(T − t,Xt) Px a.s., t ∈ [0, T ],
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which concludes the proof of (A.2.7).
Next, noting that Wn+1(t, y) ≤ Wn(t, y), n ∈ N∗, t ∈ [0, T ], y ∈ E, we get

that the map W (t, y) := limn→∞Wn(t, y), t ≥ 0, y ∈ E, is well defined. Thus,
using Lemma A.2.4 and (A.2.7), we get

ess inf
τ≥t

Ex [ZT (τ)|Ft] = lim
n→∞

hTn (t)

= lim
n→∞

e
∫ t
0 f(Xu)duWn(T − t,Xt)

= e
∫ t
0 f(Xu)duW (T − t,Xt) Px a.s., t ∈ [0, T ].

In particular, setting zT (t) := ess infτ≥t Ex [ZT (τ)|Ft], t ≥ 0, and using Theo-
rem A.2.1, for any T ≥ 0 and x ∈ E, we get

wT (x) = lnEx[zT (0)] = lnW (T, x).

Thus, we get ess infτ≥t Ex [ZT (τ)|Ft] = e
∫ t
0 f(Xu)du+wT−t(Xt), which concludes

the proof of (A.2.6).

Based on Proposition A.2.5, we get the formula for the Snell envelope of
the process (ZT (t)). Thus, using Theorem A.2.1, we get an ε-optimal stopping
time for the optimal stopping problem associated with wT . This is summarised
in the following corollary.

Corollary A.2.6. For any T ≥ 0, let (ZT (t)) and wT be given by (A.2.4)
and (A.2.5), respectively. Also, for any T ≥ 0, let

zT (t) := e
∫ t∧T
0 f(Xs)ds+wT−t∧T (Xt∧T ), t ≥ 0.

Then, for any ε > 0, T ≥ 0, and x ∈ E, the stopping time

τ εT := inf {t ≥ 0 : zT (t) ≥ −ε+ ZT (t)}

is ε-optimal for ewT (x). Also, for any T ≥ 0 and x ∈ E, the process (zT (t)),
t ≥ 0, is a Px-submartingale.

Remark A.2.7. Corollary A.2.6 gives an ε-optimal stopping time and a sub-
martingale characterisation of the finite time horizon optimal stopping prob-
lem linked to (ZT (t)), t ≥ 0. Using a similar approach, we might introduce an
infinite time horizon version of this process given by

Z(t) := exp

(∫ t

0
g(Xs)ds+G(Xt)

)
, t ≥ 0,
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and consider the associated optimal stopping problem. However, in the setting
of Chapter 3, we get g(·) ≥ c > 0 and, consequently, we get that (A.2.1) is
not satisfied. Thus, to solve the infinite time horizon problem, we need to use
some modified arguments; see Section 3.4 for details. ♦

Let us now characterise an optimal stopping time for the finite time horizon
stopping problem associated with the map wT ; see Proposition A.2.8. Note
that in the proposition we assume the continuity of (T, x) 7→ wT (x). In The-
orem 3.3.2, we show that this condition is satisfied for the maps wT and wT
given by (3.3.1) and (3.3.2), respectively.

Proposition A.2.8. For any T ≥ 0, let wT be given by (A.2.5). Assume
that the map (T, x) 7→ wT (x) is jointly continuous. Then, for any T ≥ 0 and
x ∈ E, the stopping time

τT := inf{t ≥ 0 : wT−t(Xt) = G(Xt)} ∧ T (A.2.8)

is optimal for wT (x). Moreover, for any T ≥ 0 and x ∈ E, the process

zT (t) := e
∫ t∧T
0 f(Xs)ds+wT−t∧T (Xt∧T ), t ≥ 0 (A.2.9)

is a Px-submartingale and (zT (τT ∧ t)), t ≥ 0, is a Px-martingale.

Proof. We start with showing the optimality of τT . Recall the process (ZT (t)),
T ≥ 0, given by (A.2.4). Using Proposition A.2.5, we get that zT is the Snell
envelope of ZT . Also, using Corollary A.2.6, we get that, for any ε > 0, T ≥ 0,
and x ∈ E, the process (zT (t)), t ≥ 0, is a Px-submartingale and

τ εT := inf {t ≥ 0 : zT (t) ≥ −ε+ ZT (t)}

is an ε-optimal stopping time for ewT (x). Also, using the fact that

zT (T ) = e
∫ T
0 f(Xs)ds+w0(XT ) = e

∫ T
0 f(Xs)ds+h(XT ) = ZT (T ),

we get τ εT ≤ T . Now, with the help of a suitable limiting procedure, we
construct an optimal stopping time. Note that setting

τ̂ εT := inf
{
t ≥ 0 : ewT−t(Xt) ≥ (−ε) · e−

∫ t
0 f(Xs)ds + eG(Xt)

}
, (A.2.10)

we get τ εT = τ̂ εT ∧ T . Thus, noting that τ̂ ε1T ≥ τ̂ ε2T for 0 ≤ ε1 ≤ ε2, we may
define

τ̂T := lim
ε↓0

(τ̂ εT ∧ T ) = lim
ε↓0

τ εT .
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Let us now show that τ̂T = τT , where τT is given by (A.2.8). For any ε > 0,
on the event {τ̂ εT < T}, recalling (A.2.10), the continuity of (T, x) 7→ wT (x)
and x 7→ G(x), and the right-continuity of (Xt), we get

e
wT−τ̂ε

T

(
Xτ̂ε

T

)
≥ (−ε) · e−

∫ τ̂εT
0 f(Xs)ds + e

G(Xτ̂ε
T

)
. (A.2.11)

Thus, letting ε ↓ 0, on the event {τ̂T < T}, we get ewT−τ̂T (Xτ̂T ) ≥ eG(Xτ̂T ).
Noting that wS(x) ≤ G(x), for any x ∈ E and S ≥ 0, on the event {τ̂T < T},
we in fact get wT−τ̂T (Xτ̂T ) = G(Xτ̂T ). Thus, recalling (A.2.8), we get τT ≤ τ̂T
on the event {τ̂T < T}. In fact, we get τT ≤ τ̂T on Ω, since, on the event
{τ̂T = T}, we get τT ≤ T = τ̂T . Also, noting that τ εT ≤ τT , ε > 0, and letting
ε ↓ 0, we finally get τT = τ̂T .

Now we show that τT = τ̂T is optimal for wT . Using Fatou’s lemma, for
any x ∈ E, we get

lim
ε→0

(ewT (x) + ε) ≥ lim inf
ε→0

Ex
[
e
∫ τεT
0 f(Xs)ds+1{τε

T
<T}G(Xτε

T
)+1{τε

T
=T}h(XT )

]
≥ Ex

[
lim inf
ε→0

e
∫ τεT
0 f(Xs)ds+1{τε

T
<T}G(Xτε

T
)+1{τε

T
=T}h(XT )

]
.

(A.2.12)

We show that

lim inf
ε→0

e
∫ τεT
0 f(Xs)ds+1{τε

T
<T}G(Xτε

T
)+1{τε

T
=T}h(XT )

≥ e
∫ τ̂T
0 f(Xs)ds+1{τ̂T <T}G(Xτ̂T )+1{τ̂T=T}h(XT ).

Note that
∫ τεT

0 f(Xs)ds →
∫ τ̂T

0 f(Xs)ds as ε ↓ 0. Also, recalling the mono-

tonicity of ε 7→ τ εT , on the event A :=
⋃∞
n=1{τ

1/n
T = T}, we get

lim
ε→0

(
1{τεT<T}G(XτεT

) + 1{τεT=T}h(XT )
)

= lim
ε→0

1{τεT=T}h(XT ) = 1{τ̂T=T}h(XT )

= 1{τ̂T<T}G(Xτ̂T ) + 1{τ̂T=T}h(XT ).

Similarly, using the quasi left-continuity of X and recalling that G ≥ h, on

the event Ac =
⋂∞
n=1{τ

1/n
T < T}, we get

lim
ε→0

(
1{τεT<T}G(XτεT

) + 1{τεT=T}h(XT )
)

= lim
ε→0

G(XτεT
) = G(Xτ̂T )

≥ 1{τ̂T<T}G(Xτ̂T ) + 1{τ̂=T}h(XT ).
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Thus, recalling (A.2.12), for any x ∈ E, we get

lim
ε→0

(ewT (x) + ε) ≥ Ex
[
e
∫ τ̂T
0 f(Xs)ds+1{τ̂T <T}G(Xτ̂T )+1{τ̂T=T}h(XT )

]
≥ ewT (x)

and τT = τ̂T is optimal for wT .
Finally, let us show the martingale property of (zT (τT ∧ t)), t ≥ 0. Not-

ing that, for any t ≥ 0, we get zT (τT ∧ t) ≤ eT‖f‖ sups∈[0,T ] e
G(Xs) and us-

ing (A2), we get that the process (zT (τT ∧ t)), t ≥ 0, is uniformly inte-
grable. Thus, recalling that τT is optimal for wT (x), x ∈ E, noting that
1{τT<T}G(XτT ) = 1{τT<T}wT−τT (XτT ) and h(x) = w0(x), x ∈ E, and using
the joint continuity of (T, x) 7→ wT (x), we get

Ex[zT (0)] = ewT (x) = Ex
[
e
∫ τT
0 f(Xs)ds+1{τT <T}G(XτT )+1{τT=T}h(XT )

]
= Ex

[
e
∫ τT
0 f(Xs)ds+wT−τT (XτT )

]
= Ex

[
lim
t→∞

e
∫ τT∧t
0 f(Xs)ds+wT−τT∧t(XτT∧t)

]
= lim

t→∞
Ex [zT (τT ∧ t)] , x ∈ E. (A.2.13)

Also, using the submartingale property of (zT (t)), t ≥ 0, and Doob’s op-
tional stopping theorem, we get that the process (zT (τT ∧ t)), t ≥ 0, is a
Px-submartingale. In particular, for any t, h ≥ 0 and x ∈ E, we get

Ex [zT (τT ∧ t)] ≤ Ex [zT (τT ∧ (t+ h))] .

In fact, recalling (A.2.13), we get Ex [zT (τT ∧ t)] = Ex [zT (τT ∧ (t+ h))] for
any t, h ≥ 0. Thus, the process (zT (τT ∧ t)), t ≥ 0, is a submartingale with a
constant expectation, hence it is a martingale, which concludes the proof.

To verify the joint continuity condition from Proposition A.2.8, we use
the following simple calculus lemma; this is extensively used in the proof of
Theorem 3.3.2.

Lemma A.2.9. Let us consider the map h : R+ × E → R. Suppose that,
for any t0 ∈ R+ and x0 ∈ E, the maps t 7→ h(t, x0) and x 7→ h(t0, x) are
continuous. Also, suppose that, for any x0 ∈ E, the map t 7→ h(t, x0) is
monotonic (increasing or decreasing). Then, the map (t, x) 7→ h(t, x) is jointly
continuous.

Proof. For brevity, we assume that, for any x0 ∈ E, the map t 7→ h(t, x0) is
increasing; the remaining case could be treated using similar logic. Let t ≥ 0
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and x ∈ E. Also, let the sequences (tn) ⊂ R+ and (xn) ⊂ E be such that
tn → t and xn → x as n → ∞. Since (tn) ⊂ R+, we may choose a subse-
quence (for brevity still denoted by (tn)) such that the convergence of (tn) is
monotonic. Then, using the continuity of x 7→ h(t0, x) and t 7→ h(t, x0), and
the monotonicity of t 7→ h(t, x0), we get that the map Hn : E 3 x 7→ h(tn, x),
n ∈ N, is continuous and converges monotonically as n → ∞ to the contin-
uous map H : E 3 x 7→ h(t, x). Thus, from Dini’s theorem, we get that the
convergence of Hn to H is uniform in x from compact sets; see e.g. Theorem
7.13 in Rudin (1976) for details. Thus, we get

|h(tn, xn)− h(t, x)| ≤ |h(tn, xn)− h(t, xn)|+ |h(t, xn)− h(t, x)|
≤ |Hn(xn)−H(xn)|+ |H(xn)−H(x)| → 0, n→∞,

which concludes the proof.

A.3 Dyadic impulse control

In this section, we present some results related to the long-run dyadic im-
pulse control problems. In particular, we show the existence of a solution
to a suitable form of the impulse control Bellman equation and its link with
the optimal value of the problem. This section could be seen as an excerpt
from Pitera and Stettner (2021).

Let ((Xt)t≥0, (Px)x∈E) be a continuous time standard Cb-Feller-Markov
process on (Ω,F ,F) with values in (E, E). Next, for any m ∈ N, we set
δm := 1

2m . In this section we consider impulse control strategies V ∈ Vm with
impulse times restricted to the dyadic time-grid {kδm : k ∈ N} ∪ {+∞}. As
in Section 2.2, with a starting point x ∈ E and an impulse control strategy
V = (τi, ξi)

∞
i=1 ∈ Vm, we associate the controlled process, the corresponding

probability measure, and the expectation operator denoted by Y , P(x,V ), and
E(x,V ), respectively. Throughout this section we assume that after-impulse
states are restricted to some fixed compact set U ⊆ E, i.e. ξi ∈ U , i ∈ N∗.
Also, we recall the entropic utility measure Jγ , γ < 0, defined by (2.3.1).
Note that, for any γ < 0, x ∈ E, and V ∈ V, by Jγx and Jγ(x,V ) we denote the

corresponding versions of Jγ , where, in (2.3.1), the expectation operator E is
replaced by Ex and E(x,V ), respectively.

Let us now state some fundamental properties of the long-run dyadic im-
pulse control problem; see Proposition A.3.1. In particular, we get the ex-
istence of a solution to the Bellman equation and the optimal value of the
problem; see (A.3.3) and (A.3.4). For the proof of Proposition A.3.1, we refer
to Proposition 3.4 and Proposition 4.3 in Pitera and Stettner (2021).
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Proposition A.3.1. Let γ < 0 and m ∈ N. Assume the following conditions:

(1) We have f̂ ∈ Cb(E).

(2) We have ĉ ∈ C(E × U). Also, there exists ĉ0 < 0 such that, for any
x ∈ E and ξ ∈ U , we have

ĉ(x, ξ) ≤ ĉ0. (A.3.1)

Moreover, we have
sup
x∈E

inf
ξ∈U
|ĉ(x, ξ)| <∞. (A.3.2)

(3) There exists am > 0 and a probability measure νm on (E, E) such that
νm(U) > 0 and

inf
x∈U

Px[Xδm ∈ A] ≥ amνm(A), A ∈ E .

Then, there exists a unique (up to an additive constant) function ûγm ∈ Cb(E)
and a constant λγm ∈ R satisfying

ûγm(x) + λγm = max

(
sup
ξ∈U

(
Jγξ

(∫ δm

0
f̂(Xs)ds+ ûγm(Xδm)

)
+ ĉ(x, ξ)

)
,

Jγx

(∫ δm

0
f̂(Xs)ds+ ûγm(Xδm)

))
. (A.3.3)

Also, for any x ∈ E, we get

λγm/δm = sup
V ∈Vm

lim inf
T→∞

1

T
Jγ(x,V )

(∫ T

0
f̂(Ys)ds+

∞∑
i=1

1{τi≤T}ĉ(Yτ−i
, ξi)

)
.

(A.3.4)

Remark A.3.2. It should be noted that in Pitera and Stettner (2021) a more
general setting is considered. In particular, in that paper, the maps f̂ and
ĉ could be unbounded provided that they satisfy some growth condition ex-
pressed in terms of a suitable weight norm. In Proposition A.3.1, to simplify
the narrative, we use a bounded setting that corresponds to the weight function
identically equal to 0. In particular, we get that Assumption (A.3) from Pitera
and Stettner (2021) is trivially satisfied. ♦

Let us now show how to use Proposition A.3.1 in the setting introduced
in Section 4.1. In the following, ((Xt)t≥0, (Px)x∈E) is a continuous time stan-
dard Cb-Feller-Markov process on (Ω,F ,F) with values in (E, E), and we as-
sume (B1)–(B5).
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Proposition A.3.3. Let the map J be given by (4.3.2). Then, for any m ∈ N,
there exists a unique (up to an additive constant) function um ∈ Cb(E) and a
constant λm ∈ R satisfying

eum(x) = min

(
inf
ξ∈U

ec(x,ξ) Eξ
[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

]
,

Ex
[
e
∫ δm
0 (f(Xs)−λm)ds+um(Xδm )

])
. (A.3.5)

Also, we get
λm = inf

V ∈Vm
J(x, V ), x ∈ E. (A.3.6)

Proof. We transform the associated impulse control problem into the setting
considered in Proposition A.3.1. Let us fix some m ∈ N and γ < 0.Next,
recall the maps f ∈ C+

b (E) and c ∈ C+
b (E × U) satisfying (B2)–(B3). Also,

let us define f̂(·) := f(·)
γ and ĉ(·, -) := c(·,-)

γ . We show that the assumptions

of Proposition A.3.1 are satisfied for m, γ, f̂ , ĉ, and the Markov process X.
First, note that directly from the boundedness of f , we get that (1) is satisfied.
Second, note that from the continuity of c, we get ĉ ∈ C(E × U). Moreover,
recalling c0 > 0 from Assumption (B3) and setting ĉ0 := c0

γ , we get (A.3.1).
Also, from the boundedness of c, we get (A.3.2). Thus, we get that (2) is
satisfied. Finally, recalling that (B5) implies (B5a), we get that (3) is also
satisfied.

Then, using Proposition A.3.1, we get that there exists a unique (up to
an additive constant) function ûγm ∈ Cb(E) and a constant λγm ∈ R satisfy-
ing (A.3.3). In particular, recalling (2.3.1), we get

ûγm(x)+λγm = max

(
sup
ξ∈U

(
1

γ
lnEξ

[∫ δm

0
γf̂(Xs)ds+ γûγm(Xδm)

]
+ ĉ(x, ξ)

)
,

1

γ
lnEx

[∫ δm

0
γf̂(Xs)ds+ γûγm(Xδm)

])
. (A.3.7)

Define um(·) := γûγm(·) and note that um ∈ Cb(E). Also, let λm := γλγm
δm

. Thus,
multiplying both sides of (A.3.7) by γ < 0 and taking the exponential function,
we get that the pair (um, λm) satisfies (A.3.5). In fact, this solution is unique
(up to an additive constant for um) since the solution to (A.3.3) is unique
(up to an additive constant for ûγm) and we get a one-to-one correspondence
between (A.3.3) and (A.3.5). Also, from (A.3.4), for any x ∈ E, we get

λγm/δm = sup
V ∈Vm

lim inf
T→∞

1

T

1

γ
lnE(x,V )

[∫ T

0
γf̂(Ys)ds+

∞∑
i=1

1{τi≤T}γĉ(Yτ−i
, ξi)

]
.
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Thus, multiplying both sides by γ < 0, we get (A.3.6), which concludes the
proof.

A.4 Multiplicative Poisson Equation

In this section, we discuss the properties of a solution to the Multiplicative
Poisson Equation (MPE). Also, we introduce a change of measure technique
based on a solution to MPE and show that this transformation preserves some
important properties of Feller–Markov processes. This is extensively used in
Section 4.3.

This section is based mainly on Stettner (1989), where a useful charac-
terisation of the existence of a solution to MPE is established. Also, we refer
to Fleming et al. (1987); Balaji and Meyn (2000), and Kontoyiannis and Meyn
(2003) for the connection with Donsker–Varadhan theory and large deviations.
The existence of a solution to MPE using a span contraction approach was
studied in Di Masi and Stettner (1999) and with the help of a chain splitting
technique in Di Masi and Stettner (2007). The complete characterisation of
the existence for the finite state space Markov chains can be found in Cavazos-
Cadena and Hernández-Hernández (2009). The connection with the principal
eigenvalue of a suitable diffusion operator is discussed in Arapostathis and
Biswas (2018).

A.4.1 Existence of a solution to MPE

Let ((Xt)t≥0, (Px)x∈E) be a continuous-time standard Cb-Feller-Markov process
on (Ω,F ,F) with values in (E, E). Also, let f ∈ Cb(E) and recall the semigroup

(Pft )t≥0 defined by (2.1.5). With this semigroup we associate its type r(f)
given by

r(f) := inf
t>0

1

t
ln sup
x∈E
Pft 1(x), (A.4.1)

where 1 denotes the function identically equal to 1. Directly from the defini-
tion, we get −‖f‖ ≤ r(f) ≤ ‖f‖. Also, using Fekete’s subadditive lemma, we
may show that

r(f) = lim
t→∞

1

t
ln sup
x∈E
Pft 1(x), (A.4.2)

see Chapter 1.4.2 in Kato (1995) for details and Proposition 1 in Stettner
(1989) for alternative characterisations of r(f). Based on (A.4.2), we get that

r(f) quantifies the long-term behaviour of the exponential semigroup (Pft ), i.e.

we get that supx∈E P
f
t 1(x) is asymptotically equivalent to er(f)t as t→∞.
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This section focuses on the properties of a solution to the Multiplicative
Poisson Equation, i.e. a map v ∈ Cb(E) satisfying

v(x) = lnEx
[
exp

(∫ t

0
(f(Xs)− r(f))ds+ v(Xt)

)]
, x ∈ E, t ≥ 0. (A.4.3)

This equation could be seen as an uncontrolled version of the impulse control
Bellman equation (4.3.3). As we show in this section, with a solution to (A.4.3)
we may associate a change of measure transformation that simplifies some
optimisation problems.

Let us now provide exemplary sufficient conditions for the existence of a
solution to (A.4.3). We refer to Lemma 3.2 in Sadowy and Stettner (2002)
for the proof; see also Proposition 6 in Stettner (1989) and Proposition 2.7
in Di Masi and Stettner (1999) for some other conditions.

Theorem A.4.1. Suppose that one of the following conditions holds:

(1) There exists t0 > 0 such that, for any t ∈ (0, t0), we may find a proba-
bility measure νt on (E, E), a density pt : E × E → R+, and constants
0 < at ≤ bt <∞, such that

Px[Xt ∈ A] =

∫
A
pt(x, y)νt(dy), A ∈ E (A.4.4)

and at ≤ pt(x, y) ≤ bt, x, y ∈ E, or:

(2) There exists t0 > 0 such that, for any t ∈ (0, t0), we get

κt := sup
x,y∈E

sup
A∈E

(Px[Xt ∈ A]− Py[Xt ∈ A]) < 1

and κte
t‖f‖span < 1, where ‖f‖span := supx,y∈E(f(x)− f(y)).

Then, there exists a unique up to an additive constant function v ∈ Cb(E)
satisfying (A.4.3).

Remark A.4.2. Note that in (A.4.3) we require the formula to be satisfied for
any t ≥ 0. It can be shown that, in fact, we only need a seemingly weaker
condition. Namely, suppose that there exists v ∈ Cb(E) such that (A.4.3) is
satisfied for any x ∈ E and t ∈ [0, t0) with some t0 > 0. Then, for any t ≥ t0,
we may find n ∈ N∗ such that t/n < t0. Hence, iterating (A.4.3) and using
the Markov property of X, we get

v(x) = lnEx
[
e
∫ t/n
0 (f(Xs)−r(f))ds+v(Xt/n)

]
= lnEx

[
e
∫ 2t/n
0 (f(Xs)−r(f))ds+v(X2t/n)

]
= lnEx

[
e
∫ t
0 (f(Xs)−r(f))ds+v(Xt)

]
, x ∈ E.
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Thus, we get that (A.4.3) is satisfied for any t ≥ 0. ♦

Remark A.4.3. In our framework, we require a solution to (A.4.3) to be con-
tinuous and bounded, which facilitates the analysis in Chapter 4. In a general
setting, one may look for v ∈M(E) and µ ∈ R satisfying

v(x) = lnEx
[
exp

(∫ t

0
(f(Xs)− µ)ds+ v(Xt)

)]
, x ∈ E, t ≥ 0; (A.4.5)

provided that the expectation is well defined. It can be shown that if a pair
(v, µ) satisfies (A.4.5) and v is bounded, then µ = r(f), i.e. the constant µ is
uniquely defined; see the discussion following Corollary 2 in Stettner (1989).
An unbounded solution to (A.4.5) can be found e.g. in the example following
Remark 2 in Di Masi and Stettner (2007). ♦

A.4.2 Change of measure transformation

The existence of a solution to (A.4.3) facilitates the use of the change of
measure technique that simplifies certain stochastic control problems. More
specifically, let v ∈ Cb(E) be a solution to (A.4.3) and, for any x ∈ E, let us
define the process

Yt(x) := e−v(x)e
∫ t
0 (f(Xs)−r(f))ds+v(Xt), t ≥ 0, x ∈ E. (A.4.6)

In Proposition A.4.4 we show that (Yt(x)), t ≥ 0, is a martingale with unit
expectation. Thus, for any x ∈ E, we may define a probability measure Qx

given via a Radon–Nikodym derivative

dQx

∣∣
Ft := Yt(x)dPx

∣∣
Ft , t ≥ 0. (A.4.7)

In fact, (A.4.7) defines a consistent family of measures on (Ω,Ft), t ≥ 0,
which, under some technical assumptions (e.g. probability space being a
canonical space of càdlàg processes) can be extended to (Ω,F); see e.g. Sec-
tion 3.5 in Karatzas and Shreve (1998a) and Theorem 4.2 in Chapter V
of Parthasarathy (1967) for details. In the following we assume that this
extension is possible and satisfies (A.4.7). Also, by EQ

x , x ∈ E, we denote the
expectation operator corresponding to Qx.

In Proposition A.4.4 we show some basic properties of the measures Qx,
x ∈ E. The proof is relatively standard yet hardly accessible in the literature,
and we include it for completeness.

Proposition A.4.4. Let v ∈ Cb(E) be a solution to (A.4.3). Also, for any
x ∈ E, let (Yt(x)), t ≥ 0, and Qx be given by (A.4.6) and (A.4.7), respectively.
Then:
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(1) For any x ∈ E, the process (Yt(x)), t ≥ 0, is a Px-martingale and
Ex [Yt(x)] = 1.

(2) For any x ∈ E, λ ∈ R, G ∈ Cb(E), and τ ∈ Tx,b, we get

Ex
[
e
∫ τ
0 (f(Xs)−λ)ds+G(Xτ )

]
= ev(x) EQ

x

[
e(r(f)−λ)τ+G(Xτ )−v(Xτ )

]
. (A.4.8)

(3) For any h ∈ Cb(E), we get

EQ
x [h(Xt+u)|Ft] = EQ

Xt
[h(Xu)] , x ∈ E, t, u ≥ 0.

(4) If a process (z(t)), t ≥ 0, is a Qx-submartingale (respectively, martingale,

supermartingale), then z̃(t) := e
∫ t
0 (f(Xs)−r(f))ds+v(Xt)z(t), t ≥ 0, is a

Px-submartingale (respectively, martingale, supermartingale). Also, if a
process (z(t)), t ≥ 0, is a Px-submartingale (respectively, martingale,

supermartingale), then z̃(t) := e−
∫ t
0 (f(Xs)−r(f))ds−v(Xt)z(t), t ≥ 0, is a

Qx-submartingale (respectively, martingale, supermartingale).

Proof. For transparency, we prove the claims point by point.

Proof of (1). Using the Markov property, for any t, u ≥ 0, we get

Ex [Yt+u(x) | Ft] = e
∫ t
0 (f(Xs)−r(f))dsEx

[
e
∫ t+u
t (f(Xs)−r(f))ds+v(Xt+u)

∣∣Ft]
= e

∫ t
0 (f(Xs)−r(f))dsEXt

[
e
∫ u
0 (f(Xs)−r(f))ds+v(Xu)

]
= e

∫ t
0 (f(Xs)−r(f))dsev(Xt) = Yt(x), x ∈ E.

Also, directly from (A.4.3) and (A.4.6), we get Ex [Yt(x)] = 1, x ∈ E, t ≥ 0,
which concludes the proof of this point.

Proof of (2). By Doob’s optional stopping theorem, the boundedness of τ ,
and point (1), we get Ex [Yτ (x)] = 1. Thus, we get

Ex
[
e
∫ τ
0 (f(Xs)−λ)ds+G(Xτ )

]
= Ex

[
Yτ (x)ev(x)e−

∫ τ
0 (f(Xs)−r(f))ds−v(Xτ )e

∫ τ
0 (f(Xs)−λ)ds+G(Xτ )

]
= ev(x) EQ

x

[
e(r(f)−λ)τ+G(Xτ )−v(Xτ )

]
,

which concludes the proof of this point.
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Proof of (3). Let us fix h ∈ Cb(E), x ∈ E, and t, u ≥ 0. Using the Bayes rule
for conditional expectation (see e.g. Lemma 5.3 in Chapter 3 of Karatzas and
Shreve (1998a)), we get

EQ
x [h(Xt+u)|Ft] =

1

Ex [Yt+u(x)|Ft]
Ex [Yt+u(x)h(Xt+u)|Ft]

=
Yt(x)e−v(Xt)Ex

[
e
∫ t+u
t (f(Xs)−r(f))ds+v(Xt+u)h(Xt+u)|Ft

]
Yt(x)

= e−v(Xt)EXt
[
e
∫ u
0 (f(Xs)−µ)ds+v(Xu)h(Xu)

]
= EQ

Xt
[h(Xu)] ,

which concludes the proof of this point.

Proof of (4). We show the proof only for (z(t)) being a Qx-submartingale;
the proofs for the remaining claims are similar and omitted for brevity. Let
t, h ≥ 0 and x ∈ E. As in point (3), using the Bayes rule for conditional
expectation, we get

1

Ex [Yt+h(x)|Ft]
Ex [Yt+h(x)z(t+ h)|Ft] = EQ

x [z(t+ h)|Ft] ≥ z(t).

Hence, recalling the martingale property of (Yt(x)), we get

Ex [Yt+h(x)z(t+ h)|Ft] ≥ z(t)Yt(x).

Consequently, we get

e−v(x)Ex [z̃(t+ h)|Ft] = Ex
[
e−v(x)e

∫ t+h
0 (f(Xs)−r(f))ds+v(Xt+h)z(t+ h)|Ft

]
= Ex [Yt+h(x)z(t+ h)|Ft]
≥ z(t)Yt(x) = e−v(x)z̃(t),

which concludes the proof.

Let us now show that the change of measure preserves the Feller property.
To simplify the notation, we define the semigroup (PQ

t )t≥0 by

PQ
t h(x) := EQ

x [h(Xt)], t ≥ 0, h ∈Mb(E), x ∈ E; (A.4.9)

note that PQ
t could be seen as a version of Pt from (2.1.4) corresponding to

the family (Qx). Also, for any t, r > 0 and a compact set Γ ⊂ E, we define

MΓ(t, r) := sup
x∈Γ

Px[ sup
s∈[0,t]

ρ(Xs, x) ≥ r], (A.4.10)

MQ
Γ (t, r) := sup

x∈Γ
Qx[ sup

s∈[0,t]
ρ(Xs, x) ≥ r]. (A.4.11)
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Proposition A.4.5. Let v ∈ Cb(E) be a solution to (A.4.3) and let (Qx)x∈E
be given by (A.4.7). Next, let the semigroups (Pt)t≥0 and (PQ

t )t≥0 be given
by (2.1.4) and (A.4.9), respectively. Also, let t0, r0 > 0, and Γ ⊂ E be a
compact set. Then:

(1) If the semigroup (Pt)t≥0 is Cb-Feller (respectively, C0-Feller), then the

semigroup (PQ
t )t≥0 is also Cb-Feller (respectively, C0-Feller).

(2) If we get limt→0MΓ(t, r0) = 0, then we get limt→0M
Q
Γ (t, r0) = 0. Also,

if we get limr→∞MΓ(t0, r) = 0, then we get limr→∞M
Q
Γ (t0, r) = 0.

Proof. To prove (1), note that, for any h ∈ Cb(E), we get

PQ
t h(x) = e−v(x)Ex

[
e
∫ t
0 (f(Xs)−r(f))ds+v(Xt)h(Xt)

]
, t ≥ 0, x ∈ E.

Thus, recalling the continuity of v and using Proposition 2.1.8, we get that
the property PtCb(E) ⊂ Cb(E), t > 0, implies PQ

t Cb(E) ⊂ Cb(E), t > 0. Also,
from the boundedness of v and f , we get

|PQ
t h(x)| ≤ e2‖v‖+t‖f−r(f)‖|Pth(x)|, t ≥ 0, h ∈ Cb(E), x ∈ E.

Thus, from PtC0(E) ⊂ C0(E), t > 0, we get PQ
t C0(E) ⊂ C0(E), t > 0, which

concludes the proof of (1).

For the proof of (2), it is enough to note that, for any t, r > 0, we get

MQ
Γ (t, r) = sup

x∈Γ
e−v(x)Ex

[
e
∫ t
0 (f(Xs)−r(f))ds+v(Xt)1{sups∈[0,t] ρ(Xs,x)≥r}

]
≤ e2‖v‖+t‖f−r(f)‖MΓ(t, r).

Thus, letting t→ 0 or r →∞, we conclude the proof.

In Theorem A.4.6 we show that the process (Xt)t≥0 is standard Markov
under the family of measures (Qx)x∈E . Also, we get that the change of measure
preserves the conditions from Assumptions (A4) and (B4). This is extensively
used in Section 4.3.

Theorem A.4.6. Let ((Xt)t≥0, (Px)x∈E) be a standard Cb-Feller–Markov on
(Ω,F ,F) with values in (E, E). Assume that, for any t0 > 0, r0 > 0, and a
compact set Γ ⊂ E, we get

lim
t→0

MΓ(t, r0) = 0 and lim
r→∞

MΓ(t0, r) = 0,
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where MΓ is given by (A.4.10). Then, ((Xt)t≥0, (Qx)x∈E) is a standard Cb-
Feller–Markov on (Ω,F ,F) with values in (E, E). Also, for any t0 > 0, r0 > 0,
and a compact set Γ ⊂ E, we get

lim
t→0

MQ
Γ (t, r0) = 0 and lim

r→∞
MQ

Γ (t0, r) = 0, (A.4.12)

where MQ
Γ is given by (A.4.11).

Proof. Using Proposition A.4.4, we get that ((Xt)t≥0, (Qx)x∈E) satisfies the
Markov property for deterministic stopping times. Moreover, using Proposi-
tion A.4.5, we get that X is Cb-Feller with respect to (Qx). Thus, recalling
the right-continuity of X and using Theorem 5.10 in Dynkin (1961), we get
that ((Xt)t≥0, (Qx)x∈E) is strong Markov. Also, using Proposition A.4.4, we
get that (A.4.12) is satisfied. In particular, we get that the condition M(Γ)
from Dynkin (1961) is satisfied for any compact set Γ ⊂ E. Thus, using
Theorem 6.7 in Dynkin (1961), we get that ((Xt)t≥0, (Qx)x∈E) is quasi left-
continuous. Hence, ((Xt)t≥0, (Qx)x∈E) is a standard Markov process, which
concludes the proof.
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Index of notation

Basic symbols and abbreviations

Ac Complement of a set A
N Non-negative integers {0, 1, 2, 3, . . .}
N∗ Positive integers {1, 2, 3, . . .}
R+ Non-negative real numbers [0,∞)
x ∧ y Minimum of two real numbers min(x, y)
a.s. Almost surely
inf ∅ := +∞ Infimum of the empty set∑−1

i=0(·) := 0 Value of an “empty” sum
� End of example
♦ End of remark

Notation

Symbol Page Description

B(A) 9 Borel σ-field on a metric space A
M(A) 9 Family of measurable real-valued functions on a met-

ric space A
C(A) 9 Family of continuous real-valued functions on a metric

space A
Mb(A) 9 Family of bounded measurable real-valued functions

on a metric space A
M+(A) 9 Family of non-negative measurable real-valued func-

tions on a metric space A
Cb(A) 10 C(A) ∩Mb(A)
C+(A) 10 C(A) ∩M+(A)
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C+
b (A) 10 Cb(A) ∩ C+(A)
C0(A) 10 Family of continuous real-valued functions on a metric

space A vanishing at infinity
‖f‖ 10 Supremum norm for f ∈Mb(A)
(E, E) 10 State space with the σ-field
ρ, ‖ · ‖ 10 Metric and norm-like function on E
Px, Ex 12 Conditional distribution and the corresponding expec-

tation operator for a Markov process starting from
x ∈ E

T 12 Family of stopping times
Tx 12 Family of Px a.s. finite stopping times
Tx,b 12 Family of Px a.s. bounded stopping times
T m 12 Family of stopping times with values in

{kδm : k ∈ N} ∪ {+∞}, where δm := 1
2m

T mx 12 T m ∩ Tx
T mx,b 12 T m ∩ Tx,b
Pt 13 Transition semigroup corresponding to a Markov pro-

cess X

Pft 15 Exponential semigroup corresponding to a Markov
process X and some function f ∈ Cb(E)

V 17 Family of impulse control strategies
Vm 17 Family of impulse control strategies with impulse

times on the dyadic time-grid {kδm : k ∈ N} ∪ {+∞},
where δm := 1

2m

Vn 17 Family of impulse control strategies with at most n
impulses

Vmn 17 Vm ∩ Vn
P(x,V ),E(x,V ) 17 Measure and the corresponding expectation operator

for the controlled process starting at x ∈ E and a
strategy V ∈ V

Qx, EQ
x 152 Measure and the corresponding expectation operator

induced by a solution to the Multiplicative Poisson
Equation
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